Bibliography
“Trophic Structure Of Apex Fish Communities In Closed Versus Leaky Lakes Of Arctic Alaska”. Oecologia 194, no. 3. Oecologia (2020): 491 - 504. doi:10.1007/s00442-020-04776-9.
. “Tundra Avian Community Composition During Recovery From The Anaktuvuk River Fire”. International Journal Of Wildland Fire 27. International Journal Of Wildland Fire (2018): 69. doi:10.1071/wf17159.
. “Tundra Plants Compete Effectively With Soil Microbes For Amino-Acid Nitrogen”. Ecology 77. Ecology (1996): 2142–2147. doi:10.2307/2265708.
. “Tundra Wildfire Triggers Sustained Lateral Nutrient Loss In Alaskan Arctic”. Global Change Biology. Global Change Biology (2021). doi:https://doi.org/10.1111/gcb.15507.
. “Turbulence In A Small Arctic Pond”. Limnology And Oceanography 63. Limnology And Oceanography (2018): 2337–2358. doi:10.1002/lno.10941.
. “Two Arctic Tundra Graminoids Differ In Tolerance To Herbivory When Grown With Added Soil Nutrients”. Botany 91, no. 2. Botany (2013): 82-90. doi:10.1139/cjb-2012-0143.
. “Typical Freshwater Bacteria: An Analysis Of Available 16S Rrna Gene Sequences From Plankton Of Lakes And Rivers”. Aquatic Microbial Ecology 28. Aquatic Microbial Ecology (2002): 141–155. doi:10.3354/ame028141.
. “Typical Freshwater Bacteria: An Analysis Of Available 16S Rrna Gene Sequences From Plankton Of Freshwater Lakes And Rivers”. Aquatic Microbial Ecology 28. Aquatic Microbial Ecology (2002): 141-155. doi:10.3354/ame028141.
. “Uncertainties And Recommendations”. Ambio 33, no. 7. Ambio (2004): 474-479. doi:10.1579/0044-7447-33.7.474.
. “Understanding Burn Severity Sensing In Arctic Tundra: Exploring Vegetation Indices, Suboptimal Assessment Timing And The Impact Of Increasing Pixel Size”. International Journal Of Remote Sensing 32, no. 2. International Journal Of Remote Sensing (2011): 7033-7056. doi:10.1080/01431161.2011.611187.
. “Understanding How Lake Populations Of Arctic Char Are Structured And Function With Special Consideration Of The Potential Effects Of Climate Change: A Multi-Faceted Approach”. Oecologia 176, no. 1. Oecologia (2014): 81-94. doi:10.1007/s00442-014-2993-8.
. “Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12‐Yr, Low‐Level Fertilization Experiment”. Limnology And Oceanography. Limnology And Oceanography (2021): lno.11893. doi:10.1002/lno.11893.
. “Unexpected Spatial Stability Of Water Chemistry In Headwater Stream Networks”. Ecology Letters 21. Ecology Letters (2018): 296–308. doi:10.1111/ele.12897.
. “Unexpectedly High Among-Habitat Spider (Araneae) Faunal Diversity From The Arctic Long-Term Experimental Research (Lter) Field Station At Toolik Lake, Alaska, United States Of America”. The Canadian Entomologist 145, no. Special Issue 02. The Canadian Entomologist (2013): 219-226. doi:10.4039/tce.2013.5.
. “Uniform Shrub Growth Response To June Temperature Across The North Slope Of Alaska”. Environmental Research Letters 13, no. 4. Environmental Research Letters (2018): 044013. doi:10.1088/1748-9326/aab326.
. “The U.s. Long Term Ecological Research (Lter) Program”. Bioscience 53, no. 1. Bioscience (2003): 21-32. doi:10.1641/0006-3568(2003)053%5B0021:TULTER%5D2.0.CO;2.
. “The Us Long Term Ecological Research Program”. Bioscience 53. Bioscience (2003): 21–32. doi:10.1641/0006-3568(2003)053[0021:TULTER]2.0.CO;2.
. “Using Mechanistic Models To Scale Ecological Processes Across Space And Time”. Bioscience 53, no. 1. Bioscience (2003): 68-76. doi:10.1641/0006-3568%282003%29053%5B0068%3AUMMTSE%5D2.0.CO%3B2.
. “Using Sound Pressure To Estimate Reaeration In Streams”. Journal Of The North American Benthological Society 26, no. 1. Journal Of The North American Benthological Society (2007): 28-37. doi:10.1899/0887-3593(2007)26%5B28:USPTER%5D2.0.CO;2.
. “Using Structure To Model Function: Incorporating Canopy Structure Improves Estimates Of Ecosystem Carbon Flux In Arctic Dry Heath Tundra”. Environmental Research Letters 18. Environmental Research Letters (2023): 065004. doi:10.1088/1748-9326/acceb6.
. “Validating Models Of Ecosystem Response To Global Change”. Bioscience 46, no. 3. Bioscience (1996): 190-198. doi:10.2307/1312740.
. “Variability In Greenhouse Gas Emissions From Permafrost Thaw Ponds”. Limnology And Oceanography 55, no. 1. Limnology And Oceanography (2010): 115-133. doi:10.4319/lo.2010.55.1.0115.
. “Variability Of In-Stream And Riparian Storage In A Beaded Arctic Stream”. Hydrological Processes 26, no. 19. Hydrological Processes (2012): 2938-2950. doi:10.1002/hyp.8323.
. “Variability Of Macroinvertebrate Community Composition In An Arctic And Subarctic Stream”. Hydrobiologia 172. Hydrobiologia (1989): 111-127. doi:10.1007/978-94-009-2603-5_9.
. “Variation Among Biomes In Temporal Dynamics Of Aboveground Primary Production”. Science 291. Science (2001): 481-484. doi:10.1126/science.291.5503.481.
.