Bibliography
“Linkages Among Runoff, Dissolved Organic Carbon, And The Stable Oxygen Isotope Composition Of Seawater And Other Water Mass Indicators In The Arctic Ocean”. Journal Of Geophysical Research: Biogeosciences 110, no. G2. Journal Of Geophysical Research: Biogeosciences (2005): G02013. doi:10.1029/2005jg000031.
. “Seasonal Changes In Quantity And Composition Of Suspended Particulate Organic Matter In Lagoons Of The Alaskan Beaufort Sea”. Marine Ecology Progress Series 527. Marine Ecology Progress Series (2015). doi:10.3354/meps11207.
. “Temperature And Soil Organic Matter Decomposition Rates - Synthesis Of Current Knowledge And A Way Forward”. Global Change Biology 17, no. 11. Global Change Biology (2011): 3392-3404. doi:10.1111/j.1365-2486.2011.02496.x.
. “Carbon Dioxide Supersaturation In The Surface Waters Of Lakes”. Science 265, no. 5178. Science (1994): 1568-1570. doi:10.1126/science.265.5178.1568.
. “Increased Ectomycorrhizal Fungal Abundance After Long-Term Fertilization And Warming Of Two Arctic Tundra Ecosystems”. New Phytologist 171, no. 2. New Phytologist (2006): 391-404. doi:10.1111/j.1469-8137.2006.01778.x.
. “Species Responses To Nitrogen Fertilization In Herbaceous Plant Communities, And Associated Species Traits”. Ecological Archives 89, no. 4. Ecological Archives (2008): 1175. doi:10.1890/07-1104.1.
. “Microbial Activity Of Tundra And Taiga Soils At Sub-Zero Temperatures”. Soil Biology And Biochemistry 27, no. 9. Soil Biology And Biochemistry (1995): 1231-1234. doi:10.1016/0038-0717(95)00044-F.
. “Modeling Carbon Responses Of Tundra Ecosystems To Historical And Project Climate: A Comparison Of A Plot- And A Global-Scale Ecosystem Model To Identify Process-Based Uncertainties”. Global Change Biology 6, no. s1. Global Change Biology (2000): 127-140. doi:10.1046/j.1365-2486.2000.06009.x.
. “Environmental And Plant Community Determinants Of Species Loss Following Nitrogen Enrichment”. Ecology Letters 10, no. 7. Ecology Letters (2007): 596-607. doi:10.1111/j.1461-0248.2007.01053.x.
. “Thermal Modeling Of Three Lakes Within The Continuous Permafrost Zone In Alaska Using The Lake 2.0 Model”. Geoscientific Model Development 15, no. 19. Geoscientific Model Development (2022): 7421 - 7448. doi:10.5194/gmd-15-7421-2022.
. .
“The Role Of Vertebrate Herbivores In Regulating Shrub Expansion In The Arctic: A Synthesis”. Bioscience. Bioscience (2015): biv137. doi:10.1093/biosci/biv137.
. “Autumn Migratory Departure Is Influenced By Reproductive Timing And Weather In An Arctic Passerine”. Journal Of Ornithology. Journal Of Ornithology (2020). doi:10.1007/s10336-020-01754-z.
. “Late-Season Snowfall Is Associated With Decreased Offspring Survival In Two Migratory Arctic-Breeding Songbird Species”. Journal Of Avian Biology 49, no. 9. Journal Of Avian Biology (2018). doi:10.1111/jav.01712.
. “Interannual Variability In Arctic Phenology And Reproductive Success In The White-Crowned Sparrow (Zonotrichia Leucophrys Gambelii) And Lapland Longspur (Calcarius Lapponicus)”. Society Of Integrative And Comparative Biology’s (Sicb) Annual Meeting. Society Of Integrative And Comparative Biology’s (Sicb) Annual Meeting. Austin, TX, 2014.
. “Spatiotemporal Patterns Of Tundra Fires: Late-Quaternary Charcoal Records From Alaska”. Biogeosciences 12. Biogeosciences (2015): 3177-3209. doi:10.5194/bgd-12-3177-2015.
. “Multiple Thermo-Erosional Episodes During The Past Six Millennia: Implications For The Response Of Arctic Permafrost To Climate Change”. Geology 44. Geology (2016): 439–442. doi:10.1130/g37693.1.
. “Estimating Microbial Biomass In Low-Production Ecosystems”. Department Of Biological Sciences. Department Of Biological Sciences. University of Northern Colorado, 2001.
. “Seedling Dynamics Of Some Cotton Grass Tussock Tundra Species During The Natural Revegetation Of Small Disturbed Areas”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 207-211. doi:10.1111/j.1600-0587.1982.tb01038.x.
. “Reproductive Effort In Cotton Grass Tussock Tundra”. Holarctic Ecology 5, no. 2. Holarctic Ecology (1982): 200-206. doi:10.1111/j.1600-0587.1982.tb01037.x.
. “Reconstructing Solid Precipitation From Snow Depth Measurements And A Land Surface Model”. Water Resources Research 41, no. 9. Water Resources Research (2005): W09401. doi:10.1029/2005wr003965.
. “Climate And Hydrometeorology Of The Toolik Lake Region And The Kuparuk River Basin: Past, Present, And Future”. In A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes, 21-60. A Changing Arctic: Ecological Consequences For Tundra, Streams And Lakes. New York, NY: Oxford University Press, 2014. doi:10.1093/acprof:osobl/9780199860401.003.0002.
. “Arctic Hydroclimatology”. Columbia University, 2006.
. “Evaluating Photosynthetic Activity Across Arctic-Boreal Land Cover Types Using Solar-Induced Fluorescenceabstract”. Environmental Research Letters 17, no. 11. Environmental Research Letters (2022): 115009. doi:10.1088/1748-9326/ac9dae.
. “Evaluating Photosynthetic Activity Across Arctic-Boreal Land Cover Types Using Solar-Induced Fluorescence”. Environmental Research Letters 17. Environmental Research Letters (2022): 115009. doi:10.1088/1748-9326/ac9dae.
.