ecosystem properties

Abstract
Gaius Shaver, 2022 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2015, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c733e2d9526616a20711f3856840344a
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen and phosphorous summaries for control and fertilized plots.
Burn Terrestrial Data
Abstract
Michelle Mack, 2011 Estimates of C and N loss from moist acidic tundra sites burned in the 2007 Anaktuvuk River Fire.. 10.6073/pasta/92512f58a584bca14ceaf04d062f8ee5
Estimated mean pre-fire C and N pools, and C and N loss from 20 sites in the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. In each site, we characterized residual organic soils and used biometric relationships developed in unburned sites to reconstruct pre-fire soil organic layer depth, and plant and soil C and N pools. We then estimated fire-driven losses of C and N from plant and soil organic layer pools.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the moderately burned site at Anaktuvuk River, Alaska. 10.6073/pasta/6646ac57a7397b9c8d1a2dc3c95a566c
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Summary of below ground root biomass, carbon and nitrogen concentrations from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/9ae19f41326bf63e8d4335d78d4a70d4
A summary of below ground root biomass, carbon and nitrogen concentrations, measured at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Soil properties and nutrient concentrations by depth from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/85a9e76b5d579298bc21b19a25b35c38
Below ground soil bulk density, carbon and nitrogen was measured at various depth increments in mineral and organic soil layers at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. This data corresponds with the aboveground biomass and root biomass data files: 2011ARF_AbvgroundBiomassCN, 2011ARF_RootBiomassCN_byDepth, 2011ARF_RootBiomassCN_byQuad, 2011ARF_RootBiomassCN_byQuad.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the severely burned site of the Anaktuvuk River fire, Alaska. 10.6073/pasta/7f609c982e2e6880f63bab4c3bd5af8d
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Below ground soil carbon and nitrogen concentrations in quadrats harvested from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/ab77e5fe897f697372048e9b9ca2c216
Summarized below ground soil carbon and nitrogen concentrations measured in quadrats at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. This data corresponds with the aboveground biomass and root biomass data files: 2011ARF_AbvgroundBiomassCN, 2011ARF_RootBiomassCN_byDepth, 2011ARF_RootBiomassCN_byQuad, 2011ARF_SoilCN_byDepth.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Below ground root biomass, carbon and nitrogen concentrations by depth increments from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/7a21a62a4144c3c1d9a3750926bfc6a7
Below ground root biomass was measured by depth increments at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. Roots were also analyzed for carbon and nitrogen concentrations.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the unburned control site near the Anaktuvuk River fire scar.. 10.6073/pasta/18fcdcaf43451b70610d55da6475b397
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Adrian V Rocha, 2020 Anaktuvuk River, Alaska, USA tussock tundra flowering in response to fire severity, 2008-2015. 10.6073/pasta/54a41c062a42c0538e2a0aa6dd347bdb
Eriophorum vaginatum flower counts from annual photographs at the severe, moderate, and unburned Anaktuvuk River, Alaska, USA flux tower sites during
Adrian V Rocha, 2020 Leaf area index (LAI) recorded from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/06559231aa04fd7fecd661f107985c8f
This file contains leaf area index (LAI) measurements from an  nitrogen (N), phosphorus (P)
Adrian V Rocha, 2020 Point-frame measurments from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/c28d78e8a3c11b52b38cf1f1c01dc671
This file contains point-frame measurements from a
Adrian V Rocha, 2020 Anaktuvuk River Burn Eddy Flux Measurements, Unburned Site, North Slope Alaska, 2013-2019 . 10.6073/pasta/005b8212ff751d8ca30be3350c89bae2
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Adrian V Rocha, 2020 Anaktuvuk River Burn Eddy Flux Measurements, Moderate Site, North Slope Alaska, 2013-2019 . 10.6073/pasta/d9ae45785b04e4083f2429b88568f412
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Adrian V Rocha, 2020 Anaktuvuk River Burn Eddy Flux Measurements, Severe Site, North Slope Alaska, 2013-2019 . 10.6073/pasta/9525403adb8be60bc415f2130f3bda8e
We deployed three eddy covariance towers along a burn severity gradient (i.e.
Adrian V Rocha, 2021 Leaf area index (LAI) by plant functional group in moist acidic tussock tundra, at the 2007 Anaktuvuk River fire scar measured in 2017. 10.6073/pasta/b844dc9b8092d7ceaffcaf80aa095ad2
This file contains leaf area index (LAI) based on biomass measurements from an aboveground pluck in the southern portion of the Anaktuvuk River fire scar, and a nearby unburned site in late July 2017. Vegetation was sampled randomly at 10-m intervals along two 100 meter transects at both the burned and unburned sites. Vegetation was sampled within a 10X40 cm quadrat to the mineral layer, and plant material was sorted into new and old aboveground leaf and woody biomass by species.
Adrian V Rocha, 2021 Point-frame measurement of maximum canopy height for plant growth forms at the 2007 Anaktuvuk River Fire scar measured in 2019.. 10.6073/pasta/7afab2d1a528adc58b4a8f6c7d6216f5
This file contains maximum plant heights from point frame measurements made in the southern section of the 2007 Anaktuvuk River fire scar, at a severely burned site and a nearby unburned site. Pin-vegetation contact was recorded using a 0.56 m2 frame with 41 evenly spaced sampling points. Data were collected during peak green in summer 2019.
Changing Seasonality and Arctic Stream Networks
Abstract
William "Breck" Bowden, 2013 Substrate and cover types on the stream bottom determined by point transects for streams near the Toolik Field Station, Alaska, for 2010.. 10.6073/pasta/a3de00f9b8f9d563e8bb2fd37e362bb0
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. Point transects were done throughout the sampling season to determine different substrate and cover types on the stream bottom.
Ecotypes Transplant Garden
Abstract
Ned Fetcher, James McGraw, 2013 Mass per tiller, nitrogen concentration, stable isotope ratios for carbon and nitrogen from the 1980-82 Eriophorum vaginatum reciprocal transplant experiment along a latitudinal gradient in interior Alaska collected in July, 2011. 10.6073/pasta/3c61baca4928cbd259a26ca746898b65
In 1980-1982, six transplant gardens were established along a latitudinal gradient in interior Alaska from Eagle Creek, AK in the south to Prudhoe Bay, AK in the north. Three sites, Toolik Lake (TL), Sagwon (SAG), and Prudhoe Bay (PB) are north of the continental divide and the remaining three, Eagle Creek (EC), No Name Creek (NN), and Coldfoot (CF), are south of the continental divide. Each garden consisted of 10 individual Eriophorum vaginatum tussocks transplanted back to their home-site, as well as 10 individuals from each of the other transplant sites.
Jessica Schedlbauer, Ned Fetcher, Katherine Hood, Michael L Moody, Jianwu Tang, 2018 Carbon dioxide response curve, dark respiration, specific leaf area, and leaf nitrogen data for the 2014 Eriophorum vaginatum reciprocal transplant gardens at Toolik Lake and Sagwon, AK, collected in 2016.. 10.6073/pasta/077c0caaa9ce4693b4d3249a311fc0ab
Transplant gardens at Toolik Lake and Sagwon were established in 2014.  At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SAG, 69°25′26″N, 148°42′49″W) were transplanted.  Half the transplanted tussocks were grown under ambient conditions, while the other half were exposed to passive warming supplied by open-top chambers (OTC).
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Eriophorum vaginatum flowers and mass per tiller in tussock tundra sites along the Dalton Highway, Alaska 2016 . 10.6073/pasta/fdf6574d14d8fdd178a9450e057a2021
These measurements repeat the measurements made by Shaver et al. (1986) along the Dalton Highway at some of the same sites.
Shaver, G. R., N. Fetcher, and F. S. Chapin III. 1986. Growth and flowering in Eriophorum vaginatum: Annual and latitudinal variation.  Ecology 67:1524-1535.
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Normalized difference vegetation index and Leaf area index of tussocks from reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon, Alaska 2016. 10.6073/pasta/88f7fbd7a0ba46c1e54980448b8db3d2
Normalized difference vegetation index (NDVI)  and Leaf area index (LAI) data from tussocks in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016.
Lakes Bacteria
Abstract
John Hobbie, 1998 Number of cyanobacteria in Toolik Lake at 1 meter depth during June, July and August 1996 , Arctic LTER, summer 1996.. 10.6073/pasta/3ee39ca86220c42d24edb21238d62e2f
Number of cyanobacteria in Toolik Lake at 1 meter depth during June, July and August 1996. Samples were transported to the Dept. of Fisheries and Oceans in West Vancouver, British Columbia, Canada for analysis.
Terrestrial Biomass
Abstract
Mathew Williams, Edward Rastetter, 1999 Measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, summer 1997, North Slope, Alaska.. 10.6073/pasta/a5a4d4154e0a8181a5523b4d9c49ed99
1997 measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, North Slope, Alaska.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/5587a6f1bfc4f359c011139b2977d842
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER dry heath tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/447aec542efb8fd505b85f90c35ea47e
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER dry heath tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4195a17564c031686d5b95b551119fd5
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/bdb3eeabb3b26075f0841440e8f92d3a
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Gaius Shaver, 2000 Ecosystem-level Carbon dioxide fluxes in two long-term experimental wet sedge tundra sites near Toolik Lake, AK, ARC LTER 1994.. 10.6073/pasta/e1601a77bb1471e895e47d5eef298d2c
Ecosystem-level Carbon dioxide fluxes were measured in two long-term experimental wet sedge tundra sites near Toolik Lake, AK. Experimental treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites). Fluxes were measured on quadrats that were later sampled for biomass and leaf area.
Gaius Shaver, 1996 June and August plant biomass in mesic acidic tussock tundra, 1992, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/e4c9bbe7ff8627cf706780e48aa3462a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass. Two harvests were completed, June and a late July. These are control plots from an experiment setup for a 15N experiment.
Gaius Shaver, 2000 Plant biomass in mesic acidic tussock tundra, 1998 15N controls, Toolik, Alaska.. 10.6073/pasta/e56de6e13a790a5bc90e63e2903dfc6d
Five or six quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass.
Gaius Shaver, Terry Chapin, 1991 Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK, 1982.. 10.6073/pasta/77ca341a7c1f12d8303a99fc8563182f
Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK. .There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61, 1991 pp.1-31.
Gaius Shaver, 2004 Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. 10.6073/pasta/b3407bae411c523f4857753b09f620a0
Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. Treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites).
Gaius Shaver, 1990 Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).. 10.6073/pasta/c0d17c3371e88847208dbc0b35f2f8f5
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Biomass from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River, Alaswka,1988, Arctic LTER.. 10.6073/pasta/b436a45e56aca0656484a308e4e6f12c
Biomass was harvested from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River in the northern foothills of the Brooks Range , Alaska (68degrees 46' N, 148 degrees 51' W 50m). The vegetation sites are; upland tussock tundra, "hilltop heath", a "hillslope shrub-lupine", a "footslope Equisetum", a wet sedge tundra, and a "riverside willow".
Gaius Shaver, 1995 Early July plant biomass in mesic acidic tussock tundra, 1993, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/d72ed65f521fac34139850ef30bef72a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic acidic tussock tundra. Each quadrat was separated into individual species, new and old aboveground and belowground biomass. The harvest occurred in early July to coincide with a 15N plant and soil harvest.
Gaius Shaver, Laura Gough, 1999 Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra and nonacidic tundra near Arctic LTER Toolik Plots and acidic tundra near Sagwon,Arctic LTER 1997.. 10.6073/pasta/cf45e059c576273ec58ce24769793f28
Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. All vascular species were sorted, divided into new and old growth, dried, and weighed. Lichens were separated by genus in all quadrats. In half of the quadrats (n=4), mosses were separated by species. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen.txt).
Gaius Shaver, 2002 Leaf area for select species was measured in arctic tundra experimental sites from late June into early August,Toolik Field Sattion, Alaska, Arctic LTER 2000.. 10.6073/pasta/13915ef410067ef23bad0faff678319c
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August. Measurements were made in acidic and non acidic tussock tundra and in shrub tundra in control and fertilized plots.
Gaius Shaver, 1989 Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W),1982.. 10.6073/pasta/06fd5df56a2d83c09df1d155479092d5
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Above ground biomass in acidic tussock tundra experimental site, 1989, Arctic LTER, Toolik, Alaska.. 10.6073/pasta/668dc98c3dbd83a308f0f38fb833f23e
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat.
Gaius Shaver, 1998 Plant biomass in heath tundra experimental plots, 1996, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4dcc09fd3ea2d757794d13c4727542aa
Plant biomass in arctic heath experimental plots. Plots set up in 1989 with nitrogen, phosphorus, nitrogen plus phosphorus and a shade treatment were harvested for above ground biomass. Root mass was also measured on a smaller subsample.
Gaius Shaver, 2001 Plant biomass in moist acidic tussock tundra experimental small mammal exclosures, 1999 Arctic LTER Toolik, Alaska.. 10.6073/pasta/3180bd090124c3a0d7a498e95685dfac
Above ground plant and below ground stem biomass was measured in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Leaf areas were also measured for each quadrat but are in a separate file.
Gaius Shaver, Laura Gough, 1999 A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest, Arctic LTER 1997.. 10.6073/pasta/c9d934f0c88b3f4545f997fe6dfd1a2e
A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest (see 97lg3sbm.txt). Harvests occurred in a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen).
Gaius Shaver, 1990 Seasonal plant biomass moist acidic tussock tundra, 1983, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/f15ef49234144987471d7a10d86d8bc3
Biomass in tussock tundra experimental plots near Toolik Lake, North Slope, AK (68 degrees 38N, 149derees 34W). There were five harvests in 1983. This file is the May 21-22, 1983 harvest.
Gaius Shaver, 1991 Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W), 1982.. 10.6073/pasta/5822d635c5094a1aa9aba29f0692ea49
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). .There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1996 Plant biomass, leaf area, carbon, nitrogen, and phosphorus in wet sedge tundra, 1994, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/b68ff3f714e72e0528a2d72b2c04aafc
Plant biomass, leaf area, carbon, nitrogen, and phosphorus were measured in three wet sedge tundra experimental sites. Treatments at each site included factorial NxP and at the Toolik sites greenhouse and shade house. Treatments started in 1985 (Sag site) and in 1988 (Toolik sites).
Gaius Shaver, 2002 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/24261b22fbd2ebb6bd203ceece4b8859
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Gaius Shaver, 2006 Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c3ef07e6ed81c1fc33e9bc20aff07093
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.edu/arc).
Gaius Shaver, Yuriko Yano, 2009 Bulk concentration and isotopic information of plant C and N in green leaves and tissues collected from Imnavait watershed during 2003-2005. 10.6073/pasta/329191b51f7c934d72974eaf0f9bcff9
Changes in total C and N, d13C and d15N, C:N ratio in green leaves and parts of mosses (for sphagnum, both red and green tips were included) over time since 15NH4 addition in Imnavait watershed.
Gaius Shaver, 2005 Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.. 10.6073/pasta/b227fa1d98ed466ea5fc3816ef5c8ba2
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Gaius Shaver, 1998 Above ground plant biomass and leaf area of moist acidic tussock tundra 1981 experimental site, Arctic LTER, Toolik Lake, Alaska.1995.. 10.6073/pasta/c8cc8ae964a9f9c68ffbf96cbb61e4e9
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Gaius Shaver, 2002 Plant leaf area in Arctic LTER tussock tundra experimental small mammal exclosures.. 10.6073/pasta/ad59eb7b05e4a22138a4d4c27b56f03b
Leaf areas were measured on quadrats harvested in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Biomass was also measured for each quadrat but is in a separate file.
Gaius Shaver, 1990 Above ground plant biomass a moist acidic tussock tundra experimental site, 1984, Acric LTER, Toolik Lake, Alaska.. 10.6073/pasta/08a91cb2697f7cdc82d654e82b53c5c5
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
Laura Gough, Sarah Hobbie, 2004 Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.. 10.6073/pasta/6e0b4ea291f4b5940b2b8b80af917bd5
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
Kevin Griffin, Natalie Boelman, 2020 Vegetation species abundance via point frame from Arctic LTER dry heath tundra, Toolik Field Station, Alaska, 2017. 10.6073/pasta/4b75019636e6f95760fcd49de4c99579
Vegetation (species) abundances were measured from LTER heath tundra herbivore exclosures using the point frame method. This file contains the number of pin hits per species for each subplot.
Welker IPY_Snow_shrub
Abstract
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow shrub 2007 flux data, Toolik, Alaska.. 10.6073/pasta/288210c11a86847870d9c96577ad0839
This is a study of how different snow regimes effect CO2 exchange in tussock tundra and whether there are shifts in ecosystem C cycling when facets of "drift" effects are isolated. The study is part of the IPY program and is aimed at measuring the state of Arctic tundra.
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow shrub 2008 flux data, Toolik, Alaska.. 10.6073/pasta/871da73183899995b2f5e9b4f94696d9
This is a study of how different snow regimes effect CO2 exchange in tussock tundra and whether there are shifts in ecosystem C cycling when facets of "drift" effects are isolated. The study is part of the IPY program and is aimed at measuring the state of Arctic tundra.
AON Isotopes
Abstract
Erik Hobbie, John Moore, 2017 Carbon and nitrogen isotopes and concentrations in terrestrial plants from a six-year (2006-2012) fertilization experiment at the Arctic LTER, Toolik Field Station, Alaska.. 10.6073/pasta/011d1ba5f14fc9057dd67ff201174543
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue.
Lakes Chlorophyll and Primary Production
Abstract
Anne Giblin, George Kling, 1995 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.. 10.6073/pasta/26bc0b31099bafcdf964dd47b0d654ec
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 2022 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Alaska, Arctic LTER. Summer 2010 to 2020. 10.6073/pasta/1981b68e5b34e2a87436cdf76e40b417
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2020. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 1992 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.. 10.6073/pasta/1b1538449340e68760cf86d92d7082de
Decadal file describing the chlorophyll a and primary production in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production. The amount of chlorophyll a and pheophytin were also measured.
Anne Giblin, George Kling, 1992 Chlorophyll a and primary productivity data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.. 10.6073/pasta/c14fe6e5bb0e2a2c6a74d51a6943c667
Decadal file describing the chlorophyll a and primary production in  various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009.  Sample site descriptors include an assigned number (sortchem), site, date of analysis (incubation), time, depth and rates of primary production.  The amount of chlorophyll a and pheophytin were also measured.
Terrestrial Plant Communities and Plant Species List
Abstract
Laura Gough, 2013 2011 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.. 10.6073/pasta/ac0b52cfafad29a666c71299fc6085b7
In 2011, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
Laura Gough, 2012 2010 relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; and in new experimental plots established in 2006.. 10.6073/pasta/9a838fd30e3fdde2ea9acba37afb2bfa
In 2010, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2009 Arctic LTER 2007: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic tussock and dry heath tundra.. 10.6073/pasta/fec6fbb53dafa0c6777110fa2fcda507
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic tussock and dry heath tundra.
Laura Gough, 2010 Relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; in new experimental plots established in 2006; and for Sagavanirktok River plots in tussock and heath tundra, Norht Slope Alaska 2008.. 10.6073/pasta/1553e86b8f7ebcc03b757fccc17cc13f
In 2008, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Arctic 2006: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra.. 10.6073/pasta/7b0a8419c87c05ec1fe4fb708902d428
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra, North Slope Alaska 2004.. 10.6073/pasta/30f0822d9a7d4e2980300052a67e60b1
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2001 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.. 10.6073/pasta/d780d20c2fbee479d46c0f99fcf26c9a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.
Laura Gough, 2007 Arctic LTER 2005: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, moist non-acidic and dry heath tundra.. 10.6073/pasta/c7344c7f8af925285bfb25632c545649
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra.
Laura Gough, 2003 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska 2002. 10.6073/pasta/2185fb606bfb9e55d50e4fe670c6298a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Laura Gough, 2004 Arctic LTER 2001: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/d0eff382d7c0564df5e5524e4a4e65a9
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Laura Gough, 2002 Arctic LTER 2000: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/b9cc1f0f4215535754a4acd8e29bfc0c
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Jennie McLaren, 2018 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013. . 10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. 
Laura Gough, 2021 Relative percent cover of plant species in low nutrient LTER moist acidic tundra experimental plots (MAT06) established in 2006 for years 2008, 2010-2020, Arctic LTER Toolik Field Station Alaska. . 10.6073/pasta/3b28ed94fe7916e840ff3313dbe3450c
Relative percent cover of plant species was measured in low nutrient LTER moist acidic tundra experimental plots (MAT06). Treatments include a gradient of nitrogen and phosphorus additions along with ammonium and nitrate alone.
Laura Gough, 2019 Relative percent cover of plant species for 2014 in LTER moist acidic tundra experimental plots established in 1981, Arctic LTER Toolik Field Station, Alaska. 10.6073/pasta/f619b425d2997d9f2f831cff207a1819
Relative percent cover of plant species was measured in moist acidic tundra experimental plots begun in 1981 in 2014. Treatments include Control and Nitrogen and Phosphorus.
Laura Gough, 2019 Relative percent cover of plant species for years 2013 2014 2016 2017 in LTER dry heath tundra experimental plots established in 1989, Arctic LTER Toolik, Field Station Alaska. 10.6073/pasta/25d3f0db55e9df6f99fc3e9596433090
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT).
Laura Gough, 2019 Relative percent cover of plant species for years 2012-2017 in the Arctic Long-term Ecological Research (ARC-LTER) 1989 moist acidic tundra (MAT89) experimental plots, Toolik Field Station, Alaska. . 10.6073/pasta/f31def760db3f8e6cfee5fee07cc693e
Relative percent cover of plant species was measured in ARC-LTER 1989 moist acidic tundra experimental plots. Treatments include Control (CT), Nitrogen Phosphorus (NP), Nitrogen (N), Phosphorus (P), and Greenhouse Control (GHCT). In 1996 on unassigned plots, an experiment that manipulate herbivory presence and nutrients was started. Treatments include Control Unfenced (NFCT), Nitrogen Phosphorus Unfenced (NFNP), and Small Fenced Control (CTSF). Not all treatments were measured each year.
Thermokarst MEL
Abstract
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation F - increased N deposition. 10.6073/pasta/04a2ff938b67d9d1dd4e648d370856b6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to N fertilization.. 10.6073/pasta/a1464ee098b4693f2aea4078b3e5a35c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra control simulation. 10.6073/pasta/46323340d5b33913e9399e750cb3600b
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to NP fertilization.. 10.6073/pasta/f7bb757427c523e546489a2f4cf957d4
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation E - reduced Phase I soil organic matter. 10.6073/pasta/5534808e2359f56db12593fde6bb42d0
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event under control conditions.. 10.6073/pasta/8adc3b89c8c73fe1870ad82536575f99
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation A - increased Phase II soil organic matter. 10.6073/pasta/83564c3cce28be248d93b384d58ffda1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to P fertilization.. 10.6073/pasta/7d253bd599910b0a6497c83d74369f32
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation I - doubled Phase I decomposition. 10.6073/pasta/3171b861f8c2009bdd2d1acdf5738179
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation J - doubled Phase II decomposition. 10.6073/pasta/56b00b38bd5dd8c1dc2b1b8b0b1255a8
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation H - increased N and P deposition. 10.6073/pasta/4f6210c24640c0070a871ca95cd53b9f
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra shade house simulation. 10.6073/pasta/8cf3a98c0e86a5b7e17fe9b3ada34199
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra phosphorus fertilization simulation. 10.6073/pasta/055aebf21d403577c188049995c75ca6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation B - increased Phase I soil organic matter. 10.6073/pasta/e75ab68cb99fd5094c4ebcb660986e61
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra fertilized greenhouse simulation. 10.6073/pasta/e25f1d4053e23f89a1c0e5e93c967553
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event. 10.6073/pasta/ba85d7312407e90a46fac604467f3ac7
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen and phosphorus fertilization simulation. 10.6073/pasta/fa66c6160400843ee8936df23b91881c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation D - reduced Phase I and Phase II soil organic matter. 10.6073/pasta/9f471a11c32968f2aebcc27d292a3694
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen fertilized simulation. 10.6073/pasta/be12688c444a9546f2d5fae9182f78f1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event: saturating nutrients.. 10.6073/pasta/07cba61c48ce8b31830daac1986d1c21
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation C - increased Phase I and Phase II soil organic matter. 10.6073/pasta/b3eb66158a1b1d77148ff63d145e8d90
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation G - increased P deposition. 10.6073/pasta/22cdf3a3353448cb0f819b5121a5c014
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra greenhouse simulation. 10.6073/pasta/97587f197c22b52ab9e637ffca4fceeb
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Undisturbed tussock tundra. 10.6073/pasta/f83d33ff75b3ab2c690564d7c597b364
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Terrestrial Plant Phenological and Growth Data
Abstract
Jennie McLaren, 2021 Relative percent cover and leaf nutrients was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acid tundra, Arctic LTER Toolik Field Station, Alaska 2015. 10.6073/pasta/1c57b6613111c9d05c0225de12fd1098
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra

in greenhouse and control plots. Leaf percent carbon, percent nitrogen and percent phosphorus were collected from dominant species in greenhouse and control plots

on Arctic LTER experimental plots at Toolik field station in moist acidic, non-acidic tundra, wet sedge and shrub

tundra
Terrestrial Soil Microfuna and Microflora
Abstract
John Moore, 2013 Belowground foodweb biomass and soil CN and bulk density from moist acidic tundra nutrient addition plots (since 1989, 2006) sampled July 2011.. 10.6073/pasta/4d4fb41a345e5daaa17569b14fb5ebba
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic and mineral soils in moist acidic tundra. Soil carbon and nitrogen content, bulk density, and depth are included.
John Moore, 2012 Belowground foodweb biomass from moist acidic tundra nutrient addition plots (since 1989, 1996, 2006) sampled June and August 2010.. 10.6073/pasta/642ee4945ca071a1e9dfa9f67c61daa9
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic and mineral soils in moist acidic tundra.
Howard Drossman, John Hobbie, Erik Hobbie, 2011 Soil ergoserol concentration from Abisko Sweden 2007.. 10.6073/pasta/be64d499a06fe406645551be39c6189c
The data set describes soil ergosterol concentration, which is unique to fungal membranes., from samples from Abisko, Sweden. The samples from Abisko, Sweden, were collected by E.A. Hobbie at a birch forest site and a tundra site. The Abisko sites are described in www.abacus-ipy.org/fieldsites/abisko.html.
John Moore, 2010 Belowground foodweb biomass from moist acidic tundra nutrient addition and greenhouse plots (since 1989) sampled July 2008.. 10.6073/pasta/fc3a61f2d20504a9dfc785c21d19f504
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic and mineral soils in moist acidic tundra sampled in the moist acidic tundra nutient (N&P) addition and greenhouse plots in July 2008.
John Moore, 2008 Belowground foodweb biomass from moist acidic tundra and dry heath tundra nutrient addition and herbivore exclusion plots (since 1996) sampled Summer 2006. 10.6073/pasta/635d263dd947a1ea64f8deb284945e18
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic soils in moist acidic tundra and dry heath tundra.
Howard Drossman, John Hobbie, Erik Hobbie, 2011 Soil ergosterol transect Dalton Highway Alaska 2007. 10.6073/pasta/40a48a90a74d43a6f40126ee1074a50e
The data set describes soil ergosterol concentration, which is unique to fungal membranes., from an Alaska transect . The soil samples from Alaska were collected in a trip from north to south along the Dalton Highway. north of the Yukon River.
Thermokarst Soil
Abstract
Torre Jorgenson, 2013 Permafrost soil database with information on site, topography, geomorphology, hydrology, soil stratigraphy, soil carbon, ground ice isotopes, and vegetation at thermokarst features near Toolik and Noatak River, 2009-2013. 10.6073/pasta/6294610ce5738eb9c7e5d1ce13b54017
This database contains soil and permafrost stratigraphy associated with thermokarst features near Toolik Lake and the Noatak River collected by Torre Jorgenson and Andrew Balser during summers 2009-2011. The Access Database has main data tables (tbl_) for site (environmental), soil stratigraphy, soil physical data, soil chemical data, soil isotopes (ground ice), soil radiocarbon dates, topography and bathymetry, and vegetation cover.
Terrestrial Reflectance
Abstract
Gaius Shaver, Laura Gough, 2022 Vegetation indices calculated from reflectance spectra collected at LTER plots at Toolik Lake, Alaska during the 2007-2019 growing seasons.. 10.6073/pasta/c7f5923cc5b929ccdf0d61f461147b3d
Vegetation indices calculated from reflectance spectra collected at Arctic LTER experimental plots at Toolik Lake, Alaska during the 2007-2019 growing seasons.
Terrestrial
Abstract
Laura Gough, Sarah Hobbie, 2005 Percent carbon and percent nitrogen of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/75de62f9de5e22e63a76c8b48b99cf2b
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Terrestrial Soil Properties
Abstract
Gaius Shaver, Yuriko Yano, 2009 Chloroform-extractableN and d15N within 15N addition plots for Aug 2003. 10.6073/pasta/3afcfb4b01223d351944947a7881a2d6
Pool size and d15N values for chloroform-extractable N, extractable-N, and non-extractable N pools. Samples collected in Aug. 2003 from 1st Organic Layer of 15N addition plots in Imnavait watershed.

1st Organic Layer = the upper 10 cm of organic soil or, if the organic layer was < 10 cm thick, the entire layer (e.g., there was never > 4 cm of organic soil at Crest).
Jennie McLaren, 2018 Multiple biogeochemical variables were measured for organic and mineral soils on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013.. 10.6073/pasta/2302b3a5eab56970aa4e4f71d36b7fce
Measures of soil nutrient content (available N and P, Extractable N and P, Total C, N and P), and microbial biomass and activity (exoenzyme activity) were measured for organic and mineral soils on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra (organic soils only). 
Jennie McLaren, 2019 Soil biogeochemical variables collected on the Arctic Long Term Ecological Research (ARC LTER) experimental plots in moist acidic and dry heath tundra, Arctic LTER Toolik Field Station, Alaska 2017. 10.6073/pasta/5a5cbb785bde48522bde7b87c65d3c13
Soil nutrients (
Jennie McLaren, 2021 Soil biogeochemical variables collected on the Arctic LTER experimental plots in moist acidic, moist non-acidic, wet shrub and shrub tundra, Arctic LTER Toolik Field Station, Alaska 2015. 10.6073/pasta/d4f567844673857239eec0cb61c6f543
We investigated the effect of long-term warming on multiple soil and microbial carbon, nitrogen, and phosphorus pools, and microbial extracellular enzyme activities, with a particular focus on phosphorus, in Alaskan tundra plots underlain by permafrost
Terrestrial Trace Gases
Abstract
Gaius Shaver, 2007 Percent C, Percent N and C:N ratio for leaf samples from ITEX flux survey plots for 2003-2004, Toolik Alaska.. 10.6073/pasta/92831adcff93794392ee20a4a32d5570
Foliar carbon and nitrogen concentrations of the dominant species from within the ITEX flux survey plots 2003-2004. Plots were located in the Toolik Lake LTER moist acidic tussock experiment plots in Alaska; at Imnavait Creek, Alaska.
Gaius Shaver, 2010 Leaf area, biomass, carbon and nitrogen content by species for harvests taken as part of the ITEX flux survey.. 10.6073/pasta/74407ca602bf8944e5152f7a74203ac4
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland, and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Gaius Shaver, 2010 Plant % cover by functional type for the ITEX CO2 flux survey plots at Toolik, Alaska; Abisko, Sweden; Svalbard, Norway; Zackenberg, Northeast Greenland; Anaktuvuk River Burn, Alaska and Barrow, Alaska 2003-2009.. 10.6073/pasta/fa704dc65ddc02afa5132d7287835a5c
Estimated aerial plant % cover by functional type in flux plots measured during the ITEX cirumarctic flux survey 2004-2006. Survey plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska. Measurements were made during the growing seasons 2003 to 2009.
Gaius Shaver, 2010 NDVI, leaf area index and total foliar N of harvests taken during the ITEX flux survey. 10.6073/pasta/95095cb096b2e977e6bb8658b021c76e
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Gaius Shaver, 2010 Plant % cover by species for the ITEX CO2 flux survey plots at Toolik, Alaska; Abisko, Sweden; Svalbard, Norway; Zackenberg, Northeast Greenland; and Barrow, Alaska 2004-2009. 10.6073/pasta/ee2d15731f5d84f0983c5847f0d49708
Estimated aerial plant % cover by species in flux plots measured during the ITEX circumarctic flux survey 2004-2006. Flux plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; at various sites in Adventdalen, Svalbard; in the Zackenberg valley, Northeast Greenland; at BEO near Barrow, Alaska and at the Anaktuvuk River Burn in Alaska.
Gaius Shaver, 2012 Raw pin-hit data from 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/59cbf45a4bb4a1997bc18f02a1100a64
This dataset includes every pin-hit recorded from 19 1m x 1m point frame plots of tall Betula nana and Salix pulchra canopies sampled at the Toolik Field Station, AK the summer of 2012. Twenty-five evenly spaced holes within the plot were sampled for each point frame for which the height and species was recorded for each leaf, stem, or plant that intersected the pin when lowered perpendicular to the ground. Non-woody species were grouped into functional groups (e.g. forb, graminoid, moss) and not identified to species.
Gaius Shaver, 2013 Maximum canopy height from 14 flux canopy and 19 point frame plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/7b7fb8822b918e03c6803b6ba352894b
Maximum canopy height measurements for deciduous shrub canopies sampled for both 1m x 1mc hamber flux polots (n=14) and point frame plots (n=19) in the summer of 2012 near LTER shrub plots at Toolik Lake, AK. The canopies were dominated either by Salix pulchra or Betula nana species, and plot locations were preferentially selected for tall canopies (height > 75 cm). The methods for the chamber flux and point frames are outlined here briefly, though the data from these measurements are contained in separate files.
Gaius Shaver, 2012 Summary of three different Leaf Area Index (LAI) methodologies of 19 1m x 1m point frame plots sampled near the LTER Shrub plots at Toolik Field Station in AK the summer of 2012.. 10.6073/pasta/d820beac421a90a6ea65b3b589537f66
Summary of three methods used to estimate the Leaf Area Index (LAI) of 19 1m x 1m plots sampled with a point frame near the LTER Shrub plots at the Toolik Field Station in AK the summer of 2012. The methods used were: (1) exponential relationship between LAI and NDVI as measured above the canopy with a Unispec spetroradiometer; (2) Delta-T SunScan canopy analyzer held at 5 cm above the ground under both direct and diffuse light conditions; (3) pin-drop point frame tequnique. Where values have been averaged (such as for the NDVI and SunScan measurements), the standard deviation is given.
Gaius Shaver, 2012 Leaf Area Index every 15 cm of 1m x 1m chamber flux and point frame plots and sites where dataloggers monitored PAR above, within and below S. pulchra and B. nana canopies during the growing season at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/627698983259d6963a6083d5251723cc
Leaf area index (LAI) measurements were taken with the Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. conditions The data includes all outputs from the SunScan wand: time of measurement, transmitted light, spread of PAR sensors, beam fraction, and zenith angle.
Gaius Shaver, 2013 Percent species cover from 14 flux canopy and 19 point frame 1m x 1m plots sampled near the shrub LTER sites at Toolik Field Station, Alaska, summer 2012.. 10.6073/pasta/cd9516d28ef5f7931ab108de3d5f7384
Total and individual subsample species percent cover data for all plots where flux or point frame measurements were made in 2012 IVO the LTER Shrub vegetation plots at Toolik Field Station. All plots sampled were dominated either by B. nana or S. pulchra canopies. Cover estimates were made for the five most dominate functional groups using a 1m x 1m grid with 20cm2 blocks with each square representing four percent of the total area. Percentages represent absolute cover so do not sum to 100%.
Gaius Shaver, 2012 A/Ci curve parameters measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/1f1df6b91414fd96c0c4e0aa9933f43b
A/Ci curve parameters and modeled carboxylation, electron transport, and triose-phosphate utilization efficiency rates from shoots clipped from low, mid, and the top of tall, shrub canopies dominated either by Salix pulchra or Betula nana species. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy. These plots were located near the LTER shrub plots at the Toolik Field Staion, AK for point frame measurements, and all measurements took place the summer of 2012.
Gaius Shaver, 2012 Light response curves measured from shoots harvested at three levels in the canopy from 19 1m x 1m plots dominated by S. pulchra or B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/427415da725d34c28540d03683f04900
This dataset contains light response curves and modeled light curve parameters from shoots clipped from low, mid, and the top parts of tall, shrub canopies dominated either by Salix pulchra or Betula nana. Six shoots were harvested from each 1m x 1m plot, two from each level in the canopy in plots located near the LTER shrub plots at Toolik Field Station, AK the summer of 2012. The species harvested were chosen based on the species present in each plot, thus the species from each segment of the canopy may not be the same.
Gaius Shaver, 2013 Percent carbon and nitrogen of leaves from shoots harvested at three levels in the canopy from 19 plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.. 10.6073/pasta/6e98f40b0cd7e611f62494b68a938244
The percent carbon and nitrogen from leaves of shoots harvested from 1m x 1m point frame plots the summer of 2012 at Toolik Lake, Alaska. were measured on a ThermoScientific 2000. For each point frame plot, six shoots were harvested from upper, middle, and low sections of the canopy. The photosynthetic capacity of each shoot was analyzed with a LiCor 6400 infra-red gas analyzer by being run through a light response and A/Ci curve.
Gaius Shaver, 2013 Total and diffuse photosynthetically active radiation (PAR) recorded by a beam fraction (BF3) sensor during the summer of 2012 in vicinity of Toolik Lake, Alaska.. 10.6073/pasta/e07cdf2782e0016405f9845e02ef5542
This file contains irradiance (PAR) and diffuse light data logged from a beam fraction (BF3) sensor near Toolik Lake, Alaska during the summer of 2012. The data comes from a compilation of automated datalogger readings as well as measurements taken during the field season in conjunction with the Delta-T SunScan wand to measure PAR in tall shrub canopies dominated by Betula nana or Salix pulchra species. The sensor was leveled and mounted to a 2m tripod in each location, and programmed to record instantaneous readings in 30 second to 5 minute intervals.
Gaius Shaver, 2012 Plot descriptions and location data from datalogger, 1m x 1m chamber flux and point frame plots sampled near Toolik Field Station in Alaska the summer of 2012.. 10.6073/pasta/926e2979102d5d34c193582969a97bca
"2012_GS_PFandCH_GPS" contains GPS locations of all datalogger, 1m x 1m chamber flux and point frame plots sampled IVO Toolik Field Station in Alaska during the summer of 2012. The sorting variables (YEAR, DATE, SITE, GROUP, PLOT, TREAT, PLOT SIZE) are identical to those in other files with data collected that season. The main purpose of this file is for reference and as an aid in interpretation of data analyses and among-site comparisons.
Gaius Shaver, 2012 Photosynthetically Active Radiation data taken with the Delta-T SunScan wand every 15 cm of 1m x 1m chamber flux and point frame plots as well as four remotely monitored canopies at the Toolik Field Station in AK, Summer 2012.. 10.6073/pasta/d82658b4361c7bad120af2da74885ce4
Within-canopy PAR was measured with a Delta-T SunScan wand every 15 cm from the ground to above the canopy under both direct and diffuse light. The data includes all outputs from the SunScan wand: time of measurement, spread of PAR sensors, total irradiance, total diffuse light, and individual outputs of 64-PAR sensors on the SunScan wand. These measurements were taken for 1m x 1m chamber flux (n=14) and point frame (n=19) plots as well as sites four montitored remotely by PAR sensors located above, within, and below shrub canopies.
Gaius Shaver, 2012 Harvest data including the shoot leaf area index, position in the canopy, and shoot and plant tissue area, count and mass for each shoot harvested at three levels in the canopy from 19 1m x 1m plots near LTER Shrub plots, Toolik Field Station, AK 2012.. 10.6073/pasta/11f24bddf5278229f37ea5fecf972415
Leaf and plant tissue area and mass from shoots harvested from 19 1m x 1m point frame plots near Toolik Field Station, AK during the summer of 2012. Six shoots were harvested from each plot, two from each canopy layer: upper, middle, and low. Each shoot came from a different plant, and the species selected was based on the species dominant in that canopy layer. The leaf area and mass were used to correct A/Ci and light response curves taken on each shoot [data published separately].
CSV
Subscribe to ecosystem properties