models

Models are used in many collaborating projects. Output from these models are tagged with the keyword "models". To find these datasets use the following keyword link.

Model data
Abstract
Edward Rastetter, 2020 Model output, drivers and parameters for Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes . 10.6073/pasta/24624a295f418f36ae90c99ab49bca07
Files used to generate the data for figures in:
Rastetter, EB, Kling, GW, Shaver, GR, Crump, BC, Gough, L. Ecosystem Recovery from Disturbance Is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance between Vegetation and Soil-Microbial Processes. Ecosystems (2020). https://doi.org/10.1007/s10021-020-00542-3.
Edward Rastetter, Bonnie Kwiatkowski, 2020 Model executable, output, drivers and parameters for modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. 10.6073/pasta/314852535992295685284214cc0ae78b
Files used to generate the data for figures in: Rastetter, EB, Kwiatkowski, BL. An approach to modeling resource optimization for substitutable and interdependent resources. Ecological Modelling (2020). https://doi.org/10.1016/j.ecolmodel.2020.109033. This paper presents a hierarchical approach to modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. Substitutable resources are resources that fill the same metabolic or stoichiometric need of the organism.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (With a Long-term Trend) on Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/83775003d8ef8978bf43d5c801f2a9a9
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Weather measurements for Toolik Lake, Alaska, 1989-2019. 10.6073/pasta/c37707dcee5c9bc55b3fc7599e784010
Weather measurements from the Toolk Main weather station, 1989-2019. This data was originally downloaded from the Toolik Field Station Environmental Data Center March 8, 2021.

This climate record was used in Rastetter et al., Science, submitted.

The latest climate data is available at http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php
Thermokarst MEL
Abstract
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation F - increased N deposition. 10.6073/pasta/04a2ff938b67d9d1dd4e648d370856b6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to N fertilization.. 10.6073/pasta/a1464ee098b4693f2aea4078b3e5a35c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra control simulation. 10.6073/pasta/46323340d5b33913e9399e750cb3600b
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to NP fertilization.. 10.6073/pasta/f7bb757427c523e546489a2f4cf957d4
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation E - reduced Phase I soil organic matter. 10.6073/pasta/5534808e2359f56db12593fde6bb42d0
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event under control conditions.. 10.6073/pasta/8adc3b89c8c73fe1870ad82536575f99
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation A - increased Phase II soil organic matter. 10.6073/pasta/83564c3cce28be248d93b384d58ffda1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. A 100 yr old thermal erosion event response to P fertilization.. 10.6073/pasta/7d253bd599910b0a6497c83d74369f32
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation I - doubled Phase I decomposition. 10.6073/pasta/3171b861f8c2009bdd2d1acdf5738179
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation J - doubled Phase II decomposition. 10.6073/pasta/56b00b38bd5dd8c1dc2b1b8b0b1255a8
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation H - increased N and P deposition. 10.6073/pasta/4f6210c24640c0070a871ca95cd53b9f
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra shade house simulation. 10.6073/pasta/8cf3a98c0e86a5b7e17fe9b3ada34199
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra phosphorus fertilization simulation. 10.6073/pasta/055aebf21d403577c188049995c75ca6
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation B - increased Phase I soil organic matter. 10.6073/pasta/e75ab68cb99fd5094c4ebcb660986e61
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra fertilized greenhouse simulation. 10.6073/pasta/e25f1d4053e23f89a1c0e5e93c967553
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event. 10.6073/pasta/ba85d7312407e90a46fac604467f3ac7
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen and phosphorus fertilization simulation. 10.6073/pasta/fa66c6160400843ee8936df23b91881c
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation D - reduced Phase I and Phase II soil organic matter. 10.6073/pasta/9f471a11c32968f2aebcc27d292a3694
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra nitrogen fertilized simulation. 10.6073/pasta/be12688c444a9546f2d5fae9182f78f1
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra recovery after a thermal erosion event: saturating nutrients.. 10.6073/pasta/07cba61c48ce8b31830daac1986d1c21
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation C - increased Phase I and Phase II soil organic matter. 10.6073/pasta/b3eb66158a1b1d77148ff63d145e8d90
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra regrowth after a thermal erosion event: Simulation G - increased P deposition. 10.6073/pasta/22cdf3a3353448cb0f819b5121a5c014
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Tussock tundra greenhouse simulation. 10.6073/pasta/97587f197c22b52ab9e637ffca4fceeb
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Andrea Pearce, 2014 Long term response of arctic tussock tundra to thermal erosion features: A modeling analysis. Undisturbed tussock tundra. 10.6073/pasta/f83d33ff75b3ab2c690564d7c597b364
The Multiple Element Limitation (MEL) model is used to simulate the recovery of Alaskan arctic tussock tundra to thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could be significant to regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as climate warms. These simulations deal only with recovery following TEF stabilization and do not address initial losses of C and nutrients during TEF formation.
Modeling Data
Abstract
Edward Rastetter, 2005 The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change, output from MBLGEMIII for typical tussock-tundra hill slope near Toolik Field Station, Alaska.. 10.6073/pasta/8422a982c7303e0291b83bf4b7568312
Output data sets of the MBL-GEM III model for a typical tussock-tundra hill slope. The model is described in two papers:
Le Dizès, S., Kwiatkowski B.L., Rastetter E.B., Hope A., Hobbie J.E., Stow D., Daeschner S., 2003 Modelling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska), Journal of Geophysical Research Vol. 108 No. D2 10.1029/2001JD000960.
Edward Rastetter, 2001 Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin , Alaska, 1921 to 2100.. 10.6073/pasta/2148914590223c917bffb199ef5fdde5
Output data set of the MBL-GEM III model run for tussock tundra in the Kuparuk River Basin, Alaska, described in detail in Le Dizès, S., B. L. Kwiatkowski, E. B. Rastetter, A. Hope, J. E. Hobbie, D. Stow, and S. Daeschner, Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska), J. Geophys. Res., 108(D2), 8165, doi:10.1029/2001JD000960, 2003.
Yueyang Jiang, 2016 Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.. 10.6073/pasta/3c28308d774de3b01a416bd4cb597067
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because warming increases nutrient cycles and subsequently leaching within the ecosystem.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Steady state carbon, nitrogen, phosphorus, and water budgets for twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/b737b5f0855aa7afeda68764e77aec2a
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Ecosystem responses to changes in climate and carbon dioxide in twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/7ca56dfbe6c9bedf5126e9ff7e66f28d
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset B. 10.6073/pasta/5f95c98e963409a447322b205bbc7f62
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset A. 10.6073/pasta/e8f2890db0a7a64a76580cadb47b472c
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (No Long-term Weather Trend) Control Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/a946904960bb11f44915b80fb4fc5981
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
, Modeling.
, Modeling Ecosystems recovery from Disturbance..
CSV
Subscribe to models