Modeling Data

Models are used in many collaborating projects. Output from these models are tagged with the keyword "models". To find these datasets use the following keyword link.

Model data
Abstract
Edward Rastetter, 2020 Model output, drivers and parameters for Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes . 10.6073/pasta/24624a295f418f36ae90c99ab49bca07
Files used to generate the data for figures in:
Rastetter, EB, Kling, GW, Shaver, GR, Crump, BC, Gough, L. Ecosystem Recovery from Disturbance Is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance between Vegetation and Soil-Microbial Processes. Ecosystems (2020). https://doi.org/10.1007/s10021-020-00542-3.
Edward Rastetter, Bonnie Kwiatkowski, 2020 Model executable, output, drivers and parameters for modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. 10.6073/pasta/314852535992295685284214cc0ae78b
Files used to generate the data for figures in: Rastetter, EB, Kwiatkowski, BL. An approach to modeling resource optimization for substitutable and interdependent resources. Ecological Modelling (2020). https://doi.org/10.1016/j.ecolmodel.2020.109033. This paper presents a hierarchical approach to modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. Substitutable resources are resources that fill the same metabolic or stoichiometric need of the organism.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (With a Long-term Trend) on Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/83775003d8ef8978bf43d5c801f2a9a9
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Weather measurements for Toolik Lake, Alaska, 1989-2019. 10.6073/pasta/c37707dcee5c9bc55b3fc7599e784010
Weather measurements from the Toolk Main weather station, 1989-2019. This data was originally downloaded from the Toolik Field Station Environmental Data Center March 8, 2021.

This climate record was used in Rastetter et al., Science, submitted.

The latest climate data is available at http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php
Modeling Data
Abstract
Edward Rastetter, 2005 The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change, output from MBLGEMIII for typical tussock-tundra hill slope near Toolik Field Station, Alaska.. 10.6073/pasta/8422a982c7303e0291b83bf4b7568312
Output data sets of the MBL-GEM III model for a typical tussock-tundra hill slope. The model is described in two papers:
Le Dizès, S., Kwiatkowski B.L., Rastetter E.B., Hope A., Hobbie J.E., Stow D., Daeschner S., 2003 Modelling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska), Journal of Geophysical Research Vol. 108 No. D2 10.1029/2001JD000960.
Edward Rastetter, 2001 Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin , Alaska, 1921 to 2100.. 10.6073/pasta/2148914590223c917bffb199ef5fdde5
Output data set of the MBL-GEM III model run for tussock tundra in the Kuparuk River Basin, Alaska, described in detail in Le Dizès, S., B. L. Kwiatkowski, E. B. Rastetter, A. Hope, J. E. Hobbie, D. Stow, and S. Daeschner, Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska), J. Geophys. Res., 108(D2), 8165, doi:10.1029/2001JD000960, 2003.
Yueyang Jiang, 2016 Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.. 10.6073/pasta/3c28308d774de3b01a416bd4cb597067
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because warming increases nutrient cycles and subsequently leaching within the ecosystem.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Steady state carbon, nitrogen, phosphorus, and water budgets for twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/b737b5f0855aa7afeda68764e77aec2a
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Ecosystem responses to changes in climate and carbon dioxide in twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/7ca56dfbe6c9bedf5126e9ff7e66f28d
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset B. 10.6073/pasta/5f95c98e963409a447322b205bbc7f62
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset A. 10.6073/pasta/e8f2890db0a7a64a76580cadb47b472c
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (No Long-term Weather Trend) Control Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/a946904960bb11f44915b80fb4fc5981
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
, Modeling.
, Modeling Ecosystems recovery from Disturbance..
, Modelling data and results.
CSV
Subscribe to Modeling Data