nitrogen cycling

Models are used in many collaborating projects. Output from these models are tagged with the keyword "models". To find these datasets use the following keyword link.

Model data
Abstract
Edward Rastetter, 2020 Model output, drivers and parameters for Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes . 10.6073/pasta/24624a295f418f36ae90c99ab49bca07
Files used to generate the data for figures in:
Rastetter, EB, Kling, GW, Shaver, GR, Crump, BC, Gough, L. Ecosystem Recovery from Disturbance Is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance between Vegetation and Soil-Microbial Processes. Ecosystems (2020). https://doi.org/10.1007/s10021-020-00542-3.
Edward Rastetter, Bonnie Kwiatkowski, 2020 Model executable, output, drivers and parameters for modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. 10.6073/pasta/314852535992295685284214cc0ae78b
Files used to generate the data for figures in: Rastetter, EB, Kwiatkowski, BL. An approach to modeling resource optimization for substitutable and interdependent resources. Ecological Modelling (2020). https://doi.org/10.1016/j.ecolmodel.2020.109033. This paper presents a hierarchical approach to modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. Substitutable resources are resources that fill the same metabolic or stoichiometric need of the organism.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (With a Long-term Trend) on Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/83775003d8ef8978bf43d5c801f2a9a9
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Modeling Data
Abstract
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Steady state carbon, nitrogen, phosphorus, and water budgets for twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/b737b5f0855aa7afeda68764e77aec2a
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Ecosystem responses to changes in climate and carbon dioxide in twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/7ca56dfbe6c9bedf5126e9ff7e66f28d
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset B. 10.6073/pasta/5f95c98e963409a447322b205bbc7f62
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Laura Gough, Jennie McLaren, Natalie Boelman, 2021 Modeling the effect of explicit vs implicit representaton of grazing on ecosystem carbon and nitrogen cycling in response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset A. 10.6073/pasta/e8f2890db0a7a64a76580cadb47b472c
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how explicitly representing grazers versus having grazer effects implicitly aggregated in with other biogeochemical processes in the model alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate from the processes with which they are typically aggregated.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (No Long-term Weather Trend) Control Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/a946904960bb11f44915b80fb4fc5981
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Terrestrial Soil Properties
Abstract
Jennie DeMarco, Michelle Mack, 2009 Net nitrogen mineralization from shrub gradient and snow manipulations, near Toolik field station, collect in the summer of 2006 and winter of 2006-2007. 10.6073/pasta/d63fe4fe5d2725aaa8732f1ae6548028
In arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance and height of deciduous shrubs.
Gaius Shaver, 2006 Nitrogen mineralization was determined on Arctic LTERToolik and Sag River tussock tundra using the buried bag method, Toolik Field Station, Alaska, Arctic LTER 1989-2013.. 10.6073/pasta/79e01a508bb9021e265eec2a8201b2f9
Nitrogen mineralization was determined on LTER and Sag River tussock tundra using the buried bag method. Yearly bags have been deployed every August since 1990.
CSV
Subscribe to nitrogen cycling