Eriophorum vaginatum

Burn Terrestrial Data
Abstract
Michelle Mack, 2011 Characterization of burned and unburned moist acidic tundra soils for estimating C and N loss from the 2007 Anaktuvuk River Fire, sampled in 2008.. 10.6073/pasta/9043cfa962143905d03b4ab67acc8fa7
This file contains the soil profile data for burned and unburned moist acidic tundra sites used to estimate C and N loss from the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. Unburned sites were used to develop a method for estimating soil organic layer depth and plant biomass, and for determining the characteristics of unburned soil organic layers. In burned sites, we characterized residual organic soils and used biometric measurements of tussocks to reconstruct pre-fire soil organic layer depth.
Michelle Mack, 2011 Characterization of burned and unburned moist acidic tundra sites for estimating C and N loss from the 2007 Anaktuvuk River Fire, sampled in 2008.. 10.6073/pasta/81868b65c853d5eb2052d9f1a8397d0d
Burned and unburned moist acidic tundra sites used to estimate C and N loss from the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. Unburned sites were used to develop a method for estimating soil organic layer depth and plant biomass, and for determining the characteristics of unburned soil organic layers. In burned sites, we characterized residual organic soils and used biometric measurements of tussocks to reconstruct pre-fire soil organic layer depth.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the moderately burned site at Anaktuvuk River, Alaska. 10.6073/pasta/6646ac57a7397b9c8d1a2dc3c95a566c
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Summary of below ground root biomass, carbon and nitrogen concentrations from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/9ae19f41326bf63e8d4335d78d4a70d4
A summary of below ground root biomass, carbon and nitrogen concentrations, measured at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the severely burned site of the Anaktuvuk River fire, Alaska. 10.6073/pasta/7f609c982e2e6880f63bab4c3bd5af8d
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Below ground root biomass, carbon and nitrogen concentrations by depth increments from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/7a21a62a4144c3c1d9a3750926bfc6a7
Below ground root biomass was measured by depth increments at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. Roots were also analyzed for carbon and nitrogen concentrations.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the unburned control site near the Anaktuvuk River fire scar.. 10.6073/pasta/18fcdcaf43451b70610d55da6475b397
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Adrian V Rocha, Gaius Shaver, 2015 Anaktuvuk River fire scar eriophorum vaginatum flowering during the 2008-2014 growing seasons. 10.6073/pasta/dd7955138eb963a847b861242390a48c
The Anaktuvuk River Fire occurred in 2007 on the North Slope of Alaska. In 2008, three eddy covariance towers were established at sites representing unburned tundra, moderately burned tundra, and severely burned tundra. Eriophorum vaginatum flowers were counted from annual photographs of each site during peak flowering season (6/17-7/20).
Adrian V Rocha, 2020 Point-frame measurments from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/c28d78e8a3c11b52b38cf1f1c01dc671
This file contains point-frame measurements from a
Ecotypes Transplant Garden
Abstract
Ned Fetcher, James McGraw, Cynthia Bennington, 2014 Tiller size measured on intact shoots in 1993 for the 1980-82 Eriophorum vaginatum reciprocal transplant experiment. 10.6073/pasta/5e735166a4488338335b5031d1a0dd06
These data were collected in July 1993 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, the number of green leaves, and the length of the longest leaf.
Ned Fetcher, James McGraw, 2013 Mass per tiller, nitrogen concentration, stable isotope ratios for carbon and nitrogen from the 1980-82 Eriophorum vaginatum reciprocal transplant experiment along a latitudinal gradient in interior Alaska collected in July, 2011. 10.6073/pasta/3c61baca4928cbd259a26ca746898b65
In 1980-1982, six transplant gardens were established along a latitudinal gradient in interior Alaska from Eagle Creek, AK in the south to Prudhoe Bay, AK in the north. Three sites, Toolik Lake (TL), Sagwon (SAG), and Prudhoe Bay (PB) are north of the continental divide and the remaining three, Eagle Creek (EC), No Name Creek (NN), and Coldfoot (CF), are south of the continental divide. Each garden consisted of 10 individual Eriophorum vaginatum tussocks transplanted back to their home-site, as well as 10 individuals from each of the other transplant sites.
Ned Fetcher, James McGraw, Cynthia Bennington, 2014 Tiller size measured on intact shoots in 2010 for the 1980-82 Eriophorum vaginatum reciprocal transplant experiment. 10.6073/pasta/d4603435edf67bf7a96a84313fd09239
These data were collected in July 2010 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, the number of old leaves, the number of new leaves, and the length of the longest two leaves.
Ned Fetcher, James McGraw, Cynthia Bennington, 2014 Tussock survival from 1980 through 2010 for the 1980-82 Eriophorum vaginatum reciprocal transplant experiment. 10.6073/pasta/273479a1f9e8309e31358ad25b14e920
These data were collected in July 2010 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, and whether the tussocks were alive in 1983,1993,2009, and 2010.
Ned Fetcher, James McGraw, Cynthia Bennington, 2014 Tiller size measured on intact shoots in 1983 for the 1980-82 Eriophorum vaginatum reciprocal transplant experiment. 10.6073/pasta/72d50dca08b3f45082cbc178f59d717d
These data were collected in August 1983 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, the number of green leaves, and the length of the longest leaf.
Ned Fetcher, James McGraw, Marjan van de Weg, 2014 Temperature response of dark respiration from the 1980-82 Eriophorum vaginatum reciprocal transplant experiment along Dalton Highway, Alaska.. 10.6073/pasta/90263d4b31bc565b3bab55fa012151dc
These data were collected in July 2011 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, and dark respiration.
Ned Fetcher, James McGraw, Cynthia Bennington, Caitlin Peterson, 2014 Somatal length and density in 2010 for the 1980-82 Eriophorum vaginatum reciprocal transplant experiment. 10.6073/pasta/3e82c04f8b8d18d6f8094b6f2ade694e
These data were collected in July 2010 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, length and density of stomata, and the temperature of tussocks.
Ned Fetcher, James McGraw, Sara Souther, 2013 Light-saturated photosynthetic rate, dark respiration, stomatal conductance and ratio of internal to external carbon dioxide concentration from the 1980-82 Eriophorum vaginatum reciprocal transplant plots from Eagle Creek to Prudhoe Bay, Alaska, 2010. 10.6073/pasta/ba7785eaad218efbe9c84b63805e2952
In 1980-1982, six transplant gardens were established along a latitudinal gradient in interior Alaska from Eagle Creek, AK, in the south to Prudhoe Bay, AK, in the north (Shaver et al. 1986) .Three sites, Toolik Lake (TL), Sagwon (SAG), and Prudhoe Bay (PB) are north of the continental divide and the remaining three, Eagle Creek (EC), No Name Creek (NN), and Coldfoot (CF), are south of the continental divide. Each garden consisted of 10 individual tussocks transplanted back to their home-site, as well as 10 individuals from each of the other transplant sites.
Jessica Schedlbauer, Ned Fetcher, Katherine Hood, Michael L Moody, Jianwu Tang, 2018 Carbon dioxide response curve, dark respiration, specific leaf area, and leaf nitrogen data for the 2014 Eriophorum vaginatum reciprocal transplant gardens at Toolik Lake and Sagwon, AK, collected in 2016.. 10.6073/pasta/077c0caaa9ce4693b4d3249a311fc0ab
Transplant gardens at Toolik Lake and Sagwon were established in 2014.  At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SAG, 69°25′26″N, 148°42′49″W) were transplanted.  Half the transplanted tussocks were grown under ambient conditions, while the other half were exposed to passive warming supplied by open-top chambers (OTC).
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Eriophorum vaginatum flowers and mass per tiller in tussock tundra sites along the Dalton Highway, Alaska 2016 . 10.6073/pasta/fdf6574d14d8fdd178a9450e057a2021
These measurements repeat the measurements made by Shaver et al. (1986) along the Dalton Highway at some of the same sites.
Shaver, G. R., N. Fetcher, and F. S. Chapin III. 1986. Growth and flowering in Eriophorum vaginatum: Annual and latitudinal variation.  Ecology 67:1524-1535.
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Eriophorum vaginatum leaf length 2015-2017 from 2014 common gardens established at Toolik Lake, Coldfoot, and Sagwon - Alaska. 10.6073/pasta/f755cc84f4d410f3e7b0c813ff1155a2
Data on Eriophorum vaginatum leaf length collected from common gardens established at Toolik Lake, Coldfoot, and Sagwon in 2014 with tussocks from  Coldfoot, Toolik Lake, and Sagwon. Data collected during the growing seasons of 2015, 2016, and 2017
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Quantum yield of Photosystem II of Eriophorum vaginatum leaves in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon- Alaska in 2016. 10.6073/pasta/9e35079a41e4e0f9b06ef04f51019f89
Quantum yield of Photosystem II  estimated from chlorophyll fluorescence of Eriophorum vaginatum leaves from tussocks in the reciprocal transplant gardons at Toolik Lake, Coldfoot, and Sagwon in 2016. A single transplant tussock per plot was repeatedly measured through the season.
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Litter decomposition from 2014 reciprocal transplant garden Toolik Lake, Coldfoot, and Sagwon, Alaska 2016. 10.6073/pasta/12e95d63a6c0be0124c69487182b1750
Data on litter decomposition of Eriophorum vaginatum leaves collected at Toolik Lake, Coldfoot, and Sagwon and distributed to all three sites. Litter bags from the three populations were deployed at CF (8/26/15), TL (8/24/16) and SG (8/25/16) sites approximately 40 meter away from the main transplant gardens (east of CF, east of TL and west of SG) into 5 blocks with 4 intended harvests at each plots.
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Absorbed soil nutrients on ion exchange membranes in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016. 10.6073/pasta/86225c3c1a98be0780d092f8b8bf9943
Transplant gardens at Toolik Lake and Sagwon were established in 2014.  At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SG, 69°25′26″N, 148°42′49″W) were transplanted. At the reciprocal transplant gardens, ion exchange membranes were used to measure nutrient availability over two time periods: Early season (June) and mid season (July). Membranes were deployed in the field for either 20 or 21 days, depending on travel constraints.
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Normalized difference vegetation index and Leaf area index of tussocks from reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon, Alaska 2016. 10.6073/pasta/88f7fbd7a0ba46c1e54980448b8db3d2
Normalized difference vegetation index (NDVI)  and Leaf area index (LAI) data from tussocks in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016.
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Air and soil temperature in warmed and control plots of 2014 reciprocal transplant gardens Toolik Lake, Coldfoot, and Sagwon, Alaska 2015 and 2016. 10.6073/pasta/1ff781d88be7161218e0d2419648ca52
Air and soil temperatures from iButtons located at reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2015 and 2016. The reciprocal transplant gardens at Coldfoot (CF), Toolik Lake (TL), Sagwon (SG) Each plot contains three tussocks, 30-50 centimeters apart
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Toolik Lake 2011 common garden leaf length phenology 2015-2016 Alaska. 10.6073/pasta/3ab6cda64f34f82f89933c3bc3e5caaa
Data on Eriophorum vaginatum leaf length collected from a common garden established at Toolik Lake in 2011 with tussocks from No Name Creek, Coldfoot, Eagle Creek, Toolik Lake, Sagwon, and Prudhoe Bay. Data collected during the growing seasons of 2015 and 2016. Results published in Parker, T. C., J. Tang, M. B. Clark, M. M. Moody, and N. Fetcher. 2017. Ecotypic differences in the phenology of the tundra species Eriophorum vaginatum reflect sites of origin. Ecology and Evolution 7: 9775-9786. doi: 10.1002/ece3.3445
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 White spruce trees tagged measured for total height and girth at 10 centimeter height, and leader length, Coldfoot, Alaska 2015, 2016. 10.6073/pasta/88e3e3717e6ced7f4c14aa89518f4613
White spruce seedlings have colonized the site of the Coldfoot transplant garden (CF, 67°15′32″N, 150°10′12″W) since the original garden was established in 1982.  Some trees are 2-3 meter tall. All seedlings and trees within the current (2014) garden were tagged, located with a Global Positioning System (GPS) receiver, and measured in 2015 and 2016 for total height and girth at 10 centimeter height and leader length.
root_dynamics data
Abstract
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2006 13C and 15N Content in Arctic Tussock Tundra and Wet Sedge Vegetation. 10.6073/pasta/ee1d007696eba422c9914f7cfd6f6f4d
This file contains 13C and 15N content from tussock tundra and wet sedge vegetation collected from experiemental plots during the years 2001-2006.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2004 14C Uptake by Arctic Tussock Tundra Vegetation from 2002-2006. 10.6073/pasta/4950b6f3074120dafba5c46aa7f6991f
This file contains the 14C content of tussock tundra vegetation from 2002-2006. The 14C labeling occurred the summer of 2002.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2004 14C Uptake by Arctic Wet Sedge Vegetation from 2002-2005. 10.6073/pasta/86c2e3b0f4c442aa4995f1b8e4eafd73
This file contains the 14C content of tussock tundra vegetation from 2002-2005. The 14C labeling occurred the summer of 2002.
Terrestrial Biomass
Abstract
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/5587a6f1bfc4f359c011139b2977d842
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4195a17564c031686d5b95b551119fd5
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/bdb3eeabb3b26075f0841440e8f92d3a
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Gaius Shaver, 1996 June and August plant biomass in mesic acidic tussock tundra, 1992, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/e4c9bbe7ff8627cf706780e48aa3462a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass. Two harvests were completed, June and a late July. These are control plots from an experiment setup for a 15N experiment.
Gaius Shaver, 2000 Plant biomass in mesic acidic tussock tundra, 1998 15N controls, Toolik, Alaska.. 10.6073/pasta/e56de6e13a790a5bc90e63e2903dfc6d
Five or six quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass.
Gaius Shaver, 1990 Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).. 10.6073/pasta/c0d17c3371e88847208dbc0b35f2f8f5
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Biomass from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River, Alaswka,1988, Arctic LTER.. 10.6073/pasta/b436a45e56aca0656484a308e4e6f12c
Biomass was harvested from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River in the northern foothills of the Brooks Range , Alaska (68degrees 46' N, 148 degrees 51' W 50m). The vegetation sites are; upland tussock tundra, "hilltop heath", a "hillslope shrub-lupine", a "footslope Equisetum", a wet sedge tundra, and a "riverside willow".
Gaius Shaver, 1995 Early July plant biomass in mesic acidic tussock tundra, 1993, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/d72ed65f521fac34139850ef30bef72a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic acidic tussock tundra. Each quadrat was separated into individual species, new and old aboveground and belowground biomass. The harvest occurred in early July to coincide with a 15N plant and soil harvest.
Gaius Shaver, Laura Gough, 1999 Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra and nonacidic tundra near Arctic LTER Toolik Plots and acidic tundra near Sagwon,Arctic LTER 1997.. 10.6073/pasta/cf45e059c576273ec58ce24769793f28
Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. All vascular species were sorted, divided into new and old growth, dried, and weighed. Lichens were separated by genus in all quadrats. In half of the quadrats (n=4), mosses were separated by species. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen.txt).
Gaius Shaver, 2002 Leaf area for select species was measured in arctic tundra experimental sites from late June into early August,Toolik Field Sattion, Alaska, Arctic LTER 2000.. 10.6073/pasta/13915ef410067ef23bad0faff678319c
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August. Measurements were made in acidic and non acidic tussock tundra and in shrub tundra in control and fertilized plots.
Gaius Shaver, 1990 Above ground biomass in acidic tussock tundra experimental site, 1989, Arctic LTER, Toolik, Alaska.. 10.6073/pasta/668dc98c3dbd83a308f0f38fb833f23e
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat.
Gaius Shaver, 2001 Plant biomass in moist acidic tussock tundra experimental small mammal exclosures, 1999 Arctic LTER Toolik, Alaska.. 10.6073/pasta/3180bd090124c3a0d7a498e95685dfac
Above ground plant and below ground stem biomass was measured in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Leaf areas were also measured for each quadrat but are in a separate file.
Gaius Shaver, Laura Gough, 1999 A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest, Arctic LTER 1997.. 10.6073/pasta/c9d934f0c88b3f4545f997fe6dfd1a2e
A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest (see 97lg3sbm.txt). Harvests occurred in a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen).
Gaius Shaver, 1990 Seasonal plant biomass moist acidic tussock tundra, 1983, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/f15ef49234144987471d7a10d86d8bc3
Biomass in tussock tundra experimental plots near Toolik Lake, North Slope, AK (68 degrees 38N, 149derees 34W). There were five harvests in 1983. This file is the May 21-22, 1983 harvest.
Gaius Shaver, 2002 Above ground plant biomass in a mesic acidic tussock tundra experimental site 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/24261b22fbd2ebb6bd203ceece4b8859
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Gaius Shaver, 2006 Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c3ef07e6ed81c1fc33e9bc20aff07093
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.edu/arc).
Gaius Shaver, Yuriko Yano, 2009 Bulk concentration and isotopic information of plant C and N in green leaves and tissues collected from Imnavait watershed during 2003-2005. 10.6073/pasta/329191b51f7c934d72974eaf0f9bcff9
Changes in total C and N, d13C and d15N, C:N ratio in green leaves and parts of mosses (for sphagnum, both red and green tips were included) over time since 15NH4 addition in Imnavait watershed.
Gaius Shaver, 2005 Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.. 10.6073/pasta/b227fa1d98ed466ea5fc3816ef5c8ba2
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Gaius Shaver, 1998 Above ground plant biomass and leaf area of moist acidic tussock tundra 1981 experimental site, Arctic LTER, Toolik Lake, Alaska.1995.. 10.6073/pasta/c8cc8ae964a9f9c68ffbf96cbb61e4e9
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Gaius Shaver, 2002 Plant leaf area in Arctic LTER tussock tundra experimental small mammal exclosures.. 10.6073/pasta/ad59eb7b05e4a22138a4d4c27b56f03b
Leaf areas were measured on quadrats harvested in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Biomass was also measured for each quadrat but is in a separate file.
Gaius Shaver, 1990 Above ground plant biomass a moist acidic tussock tundra experimental site, 1984, Acric LTER, Toolik Lake, Alaska.. 10.6073/pasta/08a91cb2697f7cdc82d654e82b53c5c5
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
Laura Gough, Sarah Hobbie, 2004 Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.. 10.6073/pasta/6e0b4ea291f4b5940b2b8b80af917bd5
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
AON Isotopes
Abstract
Erik Hobbie, John Moore, 2017 Carbon and nitrogen isotopes and concentrations in terrestrial plants from a six-year (2006-2012) fertilization experiment at the Arctic LTER, Toolik Field Station, Alaska.. 10.6073/pasta/011d1ba5f14fc9057dd67ff201174543
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue.
Ecotypes Disturbance experiments
Abstract
Ned Fetcher, Jianwu Tang, Michael L Moody, Thomas Parker, 2019 Effects of shading on tundra vegetation senescence at Toolik Lake, Coldfoot, Sagwon - Alaska 2016 . 10.6073/pasta/52dcd21509c4d8638ccfb5148b2ac119
Data on the effects of shading tundra vegetation from the sun when it is low in on the horizon in the north. If light quality was altered through shading, phenology might be affected. Senescence (color change) was measured for the common tundra species.
Ned Fetcher, Jianwu Tang, Michael L Moody, 2019 Effects of 2015 experimental burn on Eriophorum vaginatum at Toolik Lake Field Station, Alaska 2016. 10.6073/pasta/99e3e2d2aa874e56fb6d63551134662e
This was an experimental burn conducted in the summer of 2015 to provide sites for an experiment to see whether seeds of Eriophorum vaginatum from different ecotypes could establish in recently burned areas.  It consisted of ten 2 meter X 2 meter plots along with a similar number of control plots. There was little seedling establishment but other data have been collected on the plots.
Terrestrial Plant Communities and Plant Species List
Abstract
Laura Gough, 2013 2011 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.. 10.6073/pasta/ac0b52cfafad29a666c71299fc6085b7
In 2011, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
Laura Gough, 2012 2010 relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; and in new experimental plots established in 2006.. 10.6073/pasta/9a838fd30e3fdde2ea9acba37afb2bfa
In 2010, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2009 Arctic LTER 2007: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic tussock and dry heath tundra.. 10.6073/pasta/fec6fbb53dafa0c6777110fa2fcda507
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic tussock and dry heath tundra.
Laura Gough, 2010 Relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; in new experimental plots established in 2006; and for Sagavanirktok River plots in tussock and heath tundra, Norht Slope Alaska 2008.. 10.6073/pasta/1553e86b8f7ebcc03b757fccc17cc13f
In 2008, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Arctic 2006: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra.. 10.6073/pasta/7b0a8419c87c05ec1fe4fb708902d428
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra, North Slope Alaska 2004.. 10.6073/pasta/30f0822d9a7d4e2980300052a67e60b1
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2001 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.. 10.6073/pasta/d780d20c2fbee479d46c0f99fcf26c9a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.
Laura Gough, 2007 Arctic LTER 2005: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, moist non-acidic and dry heath tundra.. 10.6073/pasta/c7344c7f8af925285bfb25632c545649
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra.
Laura Gough, 2003 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska 2002. 10.6073/pasta/2185fb606bfb9e55d50e4fe670c6298a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Gaius Shaver, Laura Gough, 1998 Vascular plant species list, by quadrat, for harvests of tussock , wet sedge and dry heath tundra and a toposequence which included "shrub/lupine," "riverside willow" and "footslope Equisetum" communities North Slope Alaska, Arctic LTER 1983-1996.. 10.6073/pasta/19d4931588b100dc2a0abc23d849e873
Vascular plant species list, by quadrat, for harvests of tussock tundra, wet sedge tundra, dry heath tundra, and a toposequence which also included "shrub/lupine," "riverside willow" and "footslope Equisetum" communities. Includes results of long-term nutrient enrichment, increased temperature, and shade houses in selected tundra types.
Laura Gough, 2004 Arctic LTER 2001: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/d0eff382d7c0564df5e5524e4a4e65a9
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Laura Gough, 2002 Arctic LTER 2000: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/b9cc1f0f4215535754a4acd8e29bfc0c
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Jennie McLaren, 2018 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013. . 10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. 
Laura Gough, 2021 Relative percent cover of plant species in low nutrient LTER moist acidic tundra experimental plots (MAT06) established in 2006 for years 2008, 2010-2020, Arctic LTER Toolik Field Station Alaska. . 10.6073/pasta/3b28ed94fe7916e840ff3313dbe3450c
Relative percent cover of plant species was measured in low nutrient LTER moist acidic tundra experimental plots (MAT06). Treatments include a gradient of nitrogen and phosphorus additions along with ammonium and nitrate alone.
Laura Gough, 2019 Relative percent cover of plant species for 2014 in LTER moist acidic tundra experimental plots established in 1981, Arctic LTER Toolik Field Station, Alaska. 10.6073/pasta/f619b425d2997d9f2f831cff207a1819
Relative percent cover of plant species was measured in moist acidic tundra experimental plots begun in 1981 in 2014. Treatments include Control and Nitrogen and Phosphorus.
Laura Gough, 2019 Relative percent cover of plant species for years 2013 2014 2016 2017 in LTER dry heath tundra experimental plots established in 1989, Arctic LTER Toolik, Field Station Alaska. 10.6073/pasta/25d3f0db55e9df6f99fc3e9596433090
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT).
Laura Gough, 2019 Relative percent cover of plant species for years 2012-2017 in the Arctic Long-term Ecological Research (ARC-LTER) 1989 moist acidic tundra (MAT89) experimental plots, Toolik Field Station, Alaska. . 10.6073/pasta/f31def760db3f8e6cfee5fee07cc693e
Relative percent cover of plant species was measured in ARC-LTER 1989 moist acidic tundra experimental plots. Treatments include Control (CT), Nitrogen Phosphorus (NP), Nitrogen (N), Phosphorus (P), and Greenhouse Control (GHCT). In 1996 on unassigned plots, an experiment that manipulate herbivory presence and nutrients was started. Treatments include Control Unfenced (NFCT), Nitrogen Phosphorus Unfenced (NFNP), and Small Fenced Control (CTSF). Not all treatments were measured each year.
Terrestrial Plant Phenological and Growth Data
Abstract
Gaius Shaver, 1987 Seasonal patterns of leaf exsertion, elongation and senescence for Eriophorum vaginatum and Carex bigelowii was measured in mesic tussock tundra sites 1985 to 1986, near Toolik Lake, AK.. 10.6073/pasta/9340f235aed5e4db991070d02b8f5c2a
Seasonal patterns of leaf exsertion, elongation and senescence for Eriophorum vaginatum and Carex bigelowii was measured in mesic tussock tundra sites near Toolik Lake, AK. In addition, the response of both species to NP fertilizer and to variation in site fertility (after track versus non-track areas) were also assayed and compared. The research was done over two full growing seasons.
Gaius Shaver, 2006 Numbers of Eriophorum vaginatum inflorescences, both unclipped and clipped by small mammals, were counted in experimental small mammal exclosure plots, Arct LTER mosit acidic tussock site, Toolik Field Station, Alaska, 1997 to present.. 10.6073/pasta/470aaad3ff6d3fd46b4064191988b375
Numbers of Eriophorum vaginatum inflorescences, both unclipped and clipped by small mammals, were counted in experimental plots. The plots are setup in moist acidic tussock tundra near Toolik Field Station, Alaska ((8 degrees 37' 27" N, 149 degrees 36' 27"W) and include fenced exclosures in both fertilized and unfertilized tundra.
Gaius Shaver, 2006 Yearly Eriophorum vaginatum Flowering data along a transect on the Haul Road, Fairbanks to Prudhoe Bay, AK 1979 to present.. 10.6073/pasta/a4356a6bd4a807aa0884b4578190bfeb
Eriophorum vaginatum Flowering data along a transect on the Haul Road, Fairbanks to Prudhoe Bay, AK.
Modeling Data
Abstract
Yueyang Jiang, 2016 Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.. 10.6073/pasta/3c28308d774de3b01a416bd4cb597067
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because warming increases nutrient cycles and subsequently leaching within the ecosystem.
Terrestrial
Abstract
Laura Gough, Sarah Hobbie, 2005 Percent carbon and percent nitrogen of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/75de62f9de5e22e63a76c8b48b99cf2b
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Terrestrial Soil Properties
Abstract
Jennie DeMarco, Michelle Mack, 2013 Mass, C, N, and lignin from litter decomposed across a shrub gradient and with snow manipulations near Toolik Field Station between 2003 and 2009.. 10.6073/pasta/badba3735996e3de4cd02ee4bd1cfd5c
In arctic tundra near Toolik Lake, Alaska, we incubated a common substrate in a snow addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated k values from our decomposition experiments to calculate community-weighted mass loss for each site.
CSV
Subscribe to Eriophorum vaginatum