Ledum palustre

Burn Terrestrial Data
Abstract
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the moderately burned site at Anaktuvuk River, Alaska. 10.6073/pasta/6646ac57a7397b9c8d1a2dc3c95a566c
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the severely burned site of the Anaktuvuk River fire, Alaska. 10.6073/pasta/7f609c982e2e6880f63bab4c3bd5af8d
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
M. Syndonia Bret-Harte, Michelle Mack, Gaius Shaver, 2013 Above ground plant and below ground stem biomass of samples from the unburned control site near the Anaktuvuk River fire scar.. 10.6073/pasta/18fcdcaf43451b70610d55da6475b397
Above ground plant and below ground stem biomass were measured in 2011 from three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. These samples were analyzed for carbon and nitrogen concentrations.
Adrian V Rocha, 2020 Point-frame measurments from a nitrogen (N), phosphorus (P) and N+P fertilization experiment at the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016-2019 growing seasons. 10.6073/pasta/c28d78e8a3c11b52b38cf1f1c01dc671
This file contains point-frame measurements from a
root_dynamics data
Abstract
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2006 13C and 15N Content in Arctic Tussock Tundra and Wet Sedge Vegetation. 10.6073/pasta/ee1d007696eba422c9914f7cfd6f6f4d
This file contains 13C and 15N content from tussock tundra and wet sedge vegetation collected from experiemental plots during the years 2001-2006.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2004 14C Uptake by Arctic Tussock Tundra Vegetation from 2002-2006. 10.6073/pasta/4950b6f3074120dafba5c46aa7f6991f
This file contains the 14C content of tussock tundra vegetation from 2002-2006. The 14C labeling occurred the summer of 2002.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2004 14C Uptake by Arctic Wet Sedge Vegetation from 2002-2005. 10.6073/pasta/86c2e3b0f4c442aa4995f1b8e4eafd73
This file contains the 14C content of tussock tundra vegetation from 2002-2005. The 14C labeling occurred the summer of 2002.
Terrestrial Biomass
Abstract
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/5587a6f1bfc4f359c011139b2977d842
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER dry heath tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/447aec542efb8fd505b85f90c35ea47e
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER dry heath tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4195a17564c031686d5b95b551119fd5
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/bdb3eeabb3b26075f0841440e8f92d3a
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Gaius Shaver, 1996 June and August plant biomass in mesic acidic tussock tundra, 1992, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/e4c9bbe7ff8627cf706780e48aa3462a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass. Two harvests were completed, June and a late July. These are control plots from an experiment setup for a 15N experiment.
Gaius Shaver, 1990 Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).. 10.6073/pasta/c0d17c3371e88847208dbc0b35f2f8f5
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1990 Biomass from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River, Alaswka,1988, Arctic LTER.. 10.6073/pasta/b436a45e56aca0656484a308e4e6f12c
Biomass was harvested from six vegetation types along a toposequence on a floodplain terrace of the Sagavanirktok River in the northern foothills of the Brooks Range , Alaska (68degrees 46' N, 148 degrees 51' W 50m). The vegetation sites are; upland tussock tundra, "hilltop heath", a "hillslope shrub-lupine", a "footslope Equisetum", a wet sedge tundra, and a "riverside willow".
Gaius Shaver, 1995 Early July plant biomass in mesic acidic tussock tundra, 1993, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/d72ed65f521fac34139850ef30bef72a
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic acidic tussock tundra. Each quadrat was separated into individual species, new and old aboveground and belowground biomass. The harvest occurred in early July to coincide with a 15N plant and soil harvest.
Gaius Shaver, Laura Gough, 1999 Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra and nonacidic tundra near Arctic LTER Toolik Plots and acidic tundra near Sagwon,Arctic LTER 1997.. 10.6073/pasta/cf45e059c576273ec58ce24769793f28
Quadrats were harvested for aboveground biomass from eight plots within a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. All vascular species were sorted, divided into new and old growth, dried, and weighed. Lichens were separated by genus in all quadrats. In half of the quadrats (n=4), mosses were separated by species. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen.txt).
Gaius Shaver, 2002 Leaf area for select species was measured in arctic tundra experimental sites from late June into early August,Toolik Field Sattion, Alaska, Arctic LTER 2000.. 10.6073/pasta/13915ef410067ef23bad0faff678319c
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August. Measurements were made in acidic and non acidic tussock tundra and in shrub tundra in control and fertilized plots.
Gaius Shaver, 1990 Above ground biomass in acidic tussock tundra experimental site, 1989, Arctic LTER, Toolik, Alaska.. 10.6073/pasta/668dc98c3dbd83a308f0f38fb833f23e
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat.
Gaius Shaver, 2001 Plant biomass in moist acidic tussock tundra experimental small mammal exclosures, 1999 Arctic LTER Toolik, Alaska.. 10.6073/pasta/3180bd090124c3a0d7a498e95685dfac
Above ground plant and below ground stem biomass was measured in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Leaf areas were also measured for each quadrat but are in a separate file.
Gaius Shaver, Laura Gough, 1999 A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest, Arctic LTER 1997.. 10.6073/pasta/c9d934f0c88b3f4545f997fe6dfd1a2e
A harvest was conducted to determine productivity of rare species not found in at least 4 quadrats per site in a separate small quadrat aboveground biomass harvest (see 97lg3sbm.txt). Harvests occurred in a tussock, watertrack, and snowbed community at 3 sites - acidic tundra near Toolik (site of acidic LTER plots), nonacidic tundra near Toolik Lake(site of non-acidic LTER plots), and acidic tundra near Sagwon. Moss and lichen data are presented by species elsewhere (see 97lgmosslichen).
Gaius Shaver, 1990 Seasonal plant biomass moist acidic tussock tundra, 1983, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/f15ef49234144987471d7a10d86d8bc3
Biomass in tussock tundra experimental plots near Toolik Lake, North Slope, AK (68 degrees 38N, 149derees 34W). There were five harvests in 1983. This file is the May 21-22, 1983 harvest.
Gaius Shaver, 1991 Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W), 1982.. 10.6073/pasta/5822d635c5094a1aa9aba29f0692ea49
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). .There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 2006 Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/c3ef07e6ed81c1fc33e9bc20aff07093
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.edu/arc).
Gaius Shaver, 2005 Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.. 10.6073/pasta/b227fa1d98ed466ea5fc3816ef5c8ba2
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Gaius Shaver, 1990 Above ground plant biomass a moist acidic tussock tundra experimental site, 1984, Acric LTER, Toolik Lake, Alaska.. 10.6073/pasta/08a91cb2697f7cdc82d654e82b53c5c5
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
Laura Gough, Sarah Hobbie, 2004 Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.. 10.6073/pasta/6e0b4ea291f4b5940b2b8b80af917bd5
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
AON Isotopes
Abstract
Erik Hobbie, John Moore, 2017 Carbon and nitrogen isotopes and concentrations in terrestrial plants from a six-year (2006-2012) fertilization experiment at the Arctic LTER, Toolik Field Station, Alaska.. 10.6073/pasta/011d1ba5f14fc9057dd67ff201174543
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue.
Ecotypes Disturbance experiments
Abstract
Ned Fetcher, Jianwu Tang, Michael L Moody, Thomas Parker, 2019 Effects of shading on tundra vegetation senescence at Toolik Lake, Coldfoot, Sagwon - Alaska 2016 . 10.6073/pasta/52dcd21509c4d8638ccfb5148b2ac119
Data on the effects of shading tundra vegetation from the sun when it is low in on the horizon in the north. If light quality was altered through shading, phenology might be affected. Senescence (color change) was measured for the common tundra species.
Terrestrial Plant Communities and Plant Species List
Abstract
Laura Gough, 2013 2011 relative percent cover of plant species in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.. 10.6073/pasta/ac0b52cfafad29a666c71299fc6085b7
In 2011, relative percent cover of plant species was measured in LTER moist acidic tundra experimental plots and in new experimental plots established in 2006.
Laura Gough, 2012 2010 relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; and in new experimental plots established in 2006.. 10.6073/pasta/9a838fd30e3fdde2ea9acba37afb2bfa
In 2010, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2009 Arctic LTER 2007: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic tussock and dry heath tundra.. 10.6073/pasta/fec6fbb53dafa0c6777110fa2fcda507
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic tussock and dry heath tundra.
Laura Gough, 2010 Relative percent cover of plant species in LTER moist acidic, dry heath, and moist non-acidic tundra experimental plots; in new experimental plots established in 2006; and for Sagavanirktok River plots in tussock and heath tundra, Norht Slope Alaska 2008.. 10.6073/pasta/1553e86b8f7ebcc03b757fccc17cc13f
In 2008, Relative percent cover of plant species was measured in the Arctic LTER's experimental and control plots across several habitats: moist acidic, dry heath, and moist non-acidic tundra; in new variable (low) nutrient addition experimental plots established in 2006; and for Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Arctic 2006: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra.. 10.6073/pasta/7b0a8419c87c05ec1fe4fb708902d428
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2007 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, dry heath and moist non-acidic tundra, and for Sagavanirktok River plots in tussock and heath tundra, North Slope Alaska 2004.. 10.6073/pasta/30f0822d9a7d4e2980300052a67e60b1
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra, and on Sagavanirktok River toposequence plots in tussock and heath tundra.
Laura Gough, 2001 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.. 10.6073/pasta/d780d20c2fbee479d46c0f99fcf26c9a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska, Arctic LTER 1999.
Laura Gough, 2007 Arctic LTER 2005: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic, moist non-acidic and dry heath tundra.. 10.6073/pasta/c7344c7f8af925285bfb25632c545649
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and moist non acidic tussock tundra, and dry heath tundra.
Laura Gough, 2003 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra, Toolik Field Station, Alaska 2002. 10.6073/pasta/2185fb606bfb9e55d50e4fe670c6298a
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Gaius Shaver, Laura Gough, 1998 Vascular plant species list, by quadrat, for harvests of tussock , wet sedge and dry heath tundra and a toposequence which included "shrub/lupine," "riverside willow" and "footslope Equisetum" communities North Slope Alaska, Arctic LTER 1983-1996.. 10.6073/pasta/19d4931588b100dc2a0abc23d849e873
Vascular plant species list, by quadrat, for harvests of tussock tundra, wet sedge tundra, dry heath tundra, and a toposequence which also included "shrub/lupine," "riverside willow" and "footslope Equisetum" communities. Includes results of long-term nutrient enrichment, increased temperature, and shade houses in selected tundra types.
Laura Gough, 2004 Arctic LTER 2001: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/d0eff382d7c0564df5e5524e4a4e65a9
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Laura Gough, 2002 Arctic LTER 2000: Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.. 10.6073/pasta/b9cc1f0f4215535754a4acd8e29bfc0c
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and moist non-acidic tundra.
Jennie McLaren, 2018 Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013. . 10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. 
Laura Gough, 2021 Relative percent cover of plant species in low nutrient LTER moist acidic tundra experimental plots (MAT06) established in 2006 for years 2008, 2010-2020, Arctic LTER Toolik Field Station Alaska. . 10.6073/pasta/3b28ed94fe7916e840ff3313dbe3450c
Relative percent cover of plant species was measured in low nutrient LTER moist acidic tundra experimental plots (MAT06). Treatments include a gradient of nitrogen and phosphorus additions along with ammonium and nitrate alone.
Laura Gough, 2019 Relative percent cover of plant species for 2014 in LTER moist acidic tundra experimental plots established in 1981, Arctic LTER Toolik Field Station, Alaska. 10.6073/pasta/f619b425d2997d9f2f831cff207a1819
Relative percent cover of plant species was measured in moist acidic tundra experimental plots begun in 1981 in 2014. Treatments include Control and Nitrogen and Phosphorus.
Laura Gough, 2019 Relative percent cover of plant species for years 2013 2014 2016 2017 in LTER dry heath tundra experimental plots established in 1989, Arctic LTER Toolik, Field Station Alaska. 10.6073/pasta/25d3f0db55e9df6f99fc3e9596433090
Relative percent cover of plant species was measured in Arctic Long-Term Ecological Research (ARC-LTER) Dry Heath experimental plots. Treatments include Nitrogen Phosphorus (NP), and Control (CT), Nitrogen Phosphorus Unfenced (NFNP), Nitrogen Phosphorus Small Fenced (SFNP), Nitrogen Phosphorus Large Fenced (LFNP), Control (CT), Control Small Fenced (CTSF), and Control Large Fenced (LFCT).
Laura Gough, 2019 Relative percent cover of plant species for years 2012-2017 in the Arctic Long-term Ecological Research (ARC-LTER) 1989 moist acidic tundra (MAT89) experimental plots, Toolik Field Station, Alaska. . 10.6073/pasta/f31def760db3f8e6cfee5fee07cc693e
Relative percent cover of plant species was measured in ARC-LTER 1989 moist acidic tundra experimental plots. Treatments include Control (CT), Nitrogen Phosphorus (NP), Nitrogen (N), Phosphorus (P), and Greenhouse Control (GHCT). In 1996 on unassigned plots, an experiment that manipulate herbivory presence and nutrients was started. Treatments include Control Unfenced (NFCT), Nitrogen Phosphorus Unfenced (NFNP), and Small Fenced Control (CTSF). Not all treatments were measured each year.
Terrestrial Plant Phenological and Growth Data
Abstract
Gaius Shaver, 1998 Phenological stages of evergeen plants were observed at a long term experimental moist tussock tundra site (Arctic LTER) 1996 near Toolik Lake, AK.. 10.6073/pasta/b9499790f4f7cb3e3fe7b91531f732f6
Phenological stages of evergeen plants were observed at a long term experimental moist acidic tussock tundra (Arctic LTER) in 1996 near Toolik Lake, AK. Also, ITEX maximum growth measurements were recorded on August 19th (moist tussock tundra). Experimental treatments at each site included factorial NxP, greenhouse and shadehouse and were begun in 1989. See 96gsphdc and 96gsphsg for phenological data on deciduous and sedge species.
Gaius Shaver, 1993 Stems were measured, and aged from Ledum palustre and Salix pulchra on LTER Moist Acidic Tussock Tundra 1981 plots summer 1990, Toolik Lake Filed Station, AK.. 10.6073/pasta/be23ab065016ae190ff2e6ead5f4a9ad
Stems were measured, and aged from Ledum palustre and Salix pulchra species on treated plots at Toolik Lake, AK. Stem secondary growth in per cent per year was estimated from the slope of weight per unit length vs. age.
Modeling Data
Abstract
Yueyang Jiang, 2016 Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.. 10.6073/pasta/3c28308d774de3b01a416bd4cb597067
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because warming increases nutrient cycles and subsequently leaching within the ecosystem.
Terrestrial Soil Properties
Abstract
Jennie DeMarco, Michelle Mack, 2013 Mass, C, N, and lignin from litter decomposed across a shrub gradient and with snow manipulations near Toolik Field Station between 2003 and 2009.. 10.6073/pasta/badba3735996e3de4cd02ee4bd1cfd5c
In arctic tundra near Toolik Lake, Alaska, we incubated a common substrate in a snow addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated k values from our decomposition experiments to calculate community-weighted mass loss for each site.
CSV
Subscribe to Ledum palustre