elements and compounds

Burn Terrestrial Data
Abstract
Michelle Mack, 2011 Characterization of burned and unburned moist acidic tundra soils for estimating C and N loss from the 2007 Anaktuvuk River Fire, sampled in 2008.. 10.6073/pasta/9043cfa962143905d03b4ab67acc8fa7
This file contains the soil profile data for burned and unburned moist acidic tundra sites used to estimate C and N loss from the Anaktuvuk River Fire (2007). These sites were sampled in summer of 2008. Unburned sites were used to develop a method for estimating soil organic layer depth and plant biomass, and for determining the characteristics of unburned soil organic layers. In burned sites, we characterized residual organic soils and used biometric measurements of tussocks to reconstruct pre-fire soil organic layer depth.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Soil properties and nutrient concentrations by depth from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/85a9e76b5d579298bc21b19a25b35c38
Below ground soil bulk density, carbon and nitrogen was measured at various depth increments in mineral and organic soil layers at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. This data corresponds with the aboveground biomass and root biomass data files: 2011ARF_AbvgroundBiomassCN, 2011ARF_RootBiomassCN_byDepth, 2011ARF_RootBiomassCN_byQuad, 2011ARF_RootBiomassCN_byQuad.
Michelle Mack, M. Syndonia Bret-Harte, Gaius Shaver, 2013 Below ground soil carbon and nitrogen concentrations in quadrats harvested from the Anaktuvuk River Fire site in 2011. 10.6073/pasta/ab77e5fe897f697372048e9b9ca2c216
Summarized below ground soil carbon and nitrogen concentrations measured in quadrats at three sites at and around the Anaktuvuk River Burn: severely burned, moderately burned and unburned. This data corresponds with the aboveground biomass and root biomass data files: 2011ARF_AbvgroundBiomassCN, 2011ARF_RootBiomassCN_byDepth, 2011ARF_RootBiomassCN_byQuad, 2011ARF_SoilCN_byDepth.
Adrian V Rocha, 2020 Soil nutrient availability from the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2016 growing season. 10.6073/pasta/e01c5678f825642da7d69260614bdcc2
This file contains plant-available
Adrian V Rocha, 2020 Soil nutrient availability from the 2007 Anaktuvuk River, Alaska, USA fire scar during the 2019 growing season. 10.6073/pasta/76b71bb30f3a2c809eee79ac2023f652
This file contains plant-available
Changing Seasonality and Arctic Stream Networks
Abstract
William "Breck" Bowden, 2013 CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012. 10.6073/pasta/a4716dc93844548b60384a899a23e794
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location.
William "Breck" Bowden, 2013 CSASN Benthic Nutrients from 2010 to 2012 at I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers. 10.6073/pasta/6c0c54d26b2b4e18fc3f1fb6af6b196d
The Changing Seasonality of Arctic Stream Systems (CSASN) did extensive arctic stream research from 2010 to 2012. Specifically, the CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. Throughout the project, samples were collected from Benthic Rock Scrubs and Fine Benthic Organic Matter (FBOM).
William "Breck" Bowden, 2013 CSASN Well and Mini-piezomenter Samples. 10.6073/pasta/3597abe9989139bccab4d0d0b51367f0
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, well and mini-piezometer samples were collected from various depths near stream channels and analyzed for a variety of nutrients.
William "Breck" Bowden, 2013 CSASN Channel Nutrients from 2010 to 2012 in I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers. 10.6073/pasta/d19adb5a8fe01f67806e5afccf283b52
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, background samples were collected from four stream channels and analyzed for a variety of nutrients.
William "Breck" Bowden, 2013 CSASN Nutients: Tracer addition for spiraling curve characterization from 2010 to 2012. 10.6073/pasta/1a99d8b18f6311f5047665cd7c756512
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location.
William "Breck" Bowden, 2013 Whole stream metabolism (I8 Inlet, I8 Outlet; Peat Inlet; Kuparuk): Changing seasonality of Arctic stream systems project. 10.6073/pasta/b2f42a2744d8526d06c522f74c273824
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. Whole Stream Metabolism was calculated using dissolved oxygen, discharge, stage, and temperature measured by sounds deployed in the field.
William "Breck" Bowden, 2013 Nutrient and tracer amounts for Tracer Additions for Spiraling Curve Characterization studies on arctic streams near Toolik Field Station, Alaska 2010 -2012.. 10.6073/pasta/6b0e4feffc9bf3cc093dd668496d5d1b
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of tracer addition for spiraling curve characterization (TASCC) and Plateau nutrient additions at each sampling location.
Kyle Whittinghill, 2013 Three synoptic surveys of streams throughout a 48km2 watershed near Toolik Lake, AK in spring (early-June), summer (mid-July), and fall (mid-September) 2011.. 10.6073/pasta/2b27ce6b75864e21d6a8abb246abbcd2
To determine temporal and spatial patterns in arctic stream biogeochemistry we conducted three synoptic surveys of streams throughout a 48km2 watershed near Toolik Lake, AK in spring (early-June), summer (mid-July), and fall (mid-September) 2011. During each synoptic survey, we sampled 52 sites within a period of four days to minimize the effect of temporal hydrologic variability. At each site we measured stream temperature, pH, and conductivity and sampled water for solute analysis.
data
Abstract
Jay Zarnetske, 2020 High-frequency dissolved organic carbon and nitrate from the Kuparuk River outlet near Toolik Field Station, Alaska, summer 2017-2019. 10.6073/pasta/990958760c13cdd55b574c5202dc19b7
Data file describing
Jay Zarnetske, William "Breck" Bowden, Benjamin Abbot, 2020 High-frequency dissolved organic carbon and nitrate from the Oksrukuyik Creek outlet near Toolik Field Station,Alaska, summer 2017-2019 . 10.6073/pasta/5d63c098887205597ce0df929467168c
Data file describing high frequency (every ~10 minutes), optial sensor-derived chemistry of river water from Oksukuyik Creek near Toolik Field Station, North Slope of Alaska. Data file includes date, time, dissolved organic carbon (DOC) concentration, and nitrate concentration. Sensors (V2 s::can uv-vis spectrophotometers) were continuously deployed from June through August or September and optically determined nitrate and dissolved organic carbon concentrations.
Jay Zarnetske, William "Breck" Bowden, Benjamin Abbot, 2020 High-frequency dissolved organic carbon and nitrate from the Trevor Creek outlet near Toolik Field Station, Alaska, summer 2017-2019. 10.6073/pasta/3bd6a1d2d9487546f32d46d2943c6e43
Data file describing high frequency (every ~10 minutes), optial sensor-derived chemistry of river water from Trevor Creek near Toolik Field Station, North Slope of Alaska. Data file includes date, time, dissolved organic carbon (DOC) concentration, and nitrate concentration. Sensors (V2 s::can uv-vis spectrophotometers) were continuously deployed from June through August or September and optically determined nitrate and dissolved organic carbon concentrations.
Benjamin Abbot, 2021 Repeated synoptic watershed chemistry from three watersheds near Toolik Field Station, Alaska, summer 2016-2018 . 10.6073/pasta/258a44fb9055163dd4dd4371b9dce945
Data file describing repeated sampling of chemistry of distributed river water from the Kuparuk River, Oksrukuyik Creek, and Trevor Creek watersheds near Toolik Field Station, North Slope of Alaska. Data file includes sampling date, season, sampling point, subcatchment area, and resulting concentrations for a suite of solutes.
Data Photo Coupled
Abstract
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Photo-oxidation and photomineralization apparent quantum yield dataset for dissolved organic carbon leached from permafrost soils collected from the North Slope of Alaska, July 2018.. 10.6073/pasta/201f8d4009eec890d937b177da9eb919
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  Oxygen (O2) consumed from photo-oxidation of permafrost DOC was measured as a function of sunlight wavelength, defined as the apparent quantum yield spectrum of photo-oxidation (O2 consumed per mol photon absorbed by DOC).  Carbon dioxide (CO2) produced from photomineralization of permafrost DOC was measured as a function of sunlight wavelength, defined as the apparent quantum yield spectrum of photomineralization (CO2
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Radiocarbon and stable carbon isotope dataset for DOC leached from permafrost soils collected from the North Slope of Alaska in the summer of 2018. 10.6073/pasta/7a725525fcc5da13615e04e7da2a947c
Dissolved organic carbon (DOC) was leached from p
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Photodegradation of carboxyl DOC from permafrost soils collected from the North Slope of Alaska in the summer of 2015. 10.6073/pasta/695af896f3079ec15345ac803e442798
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  The photodegradation of carboxyl carbon (C) within permafrost DOC was quantified by 13C nuclear magnetic resonance (NMR). 
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Water chemistry of leachates prepared from permafrost soils collected from the North Slope of Alaska in the summers of 2015 and 2018. 10.6073/pasta/1799c4308272c99d54ef6cf84d5b4232
Soils were collected from the frozen permafrost layer (greater than 60 cm below the surface) at six sites underlying tussock or wet sedge vegetation, and on three glacial surfaces on the North Slope of Alaska during the summers of 2015 and 2018.  Dissolved organic carbon (DOC) was leached from each permafrost soil and the water chemistry was analyzed.
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Radiocarbon and stable carbon isotopes of CO2 produced from photomineralization of DOC leached from permafrost soils collected from the North Slope of Alaska in the summer of 2018. 10.6073/pasta/ecf54f89183f7bbbb7bd5d931e7323f5
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  The radiocarbon (14C) and stable carbon (13C) isotopic compositions of carbon dioxide (CO2) photochemically produced from permafrost DOC were quantified. 
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Preparation of DOC leachates from permafrost soils collected from the North Slope of Alaska in the summer of 2018. 10.6073/pasta/f35194d541f3b55fdd1778e2af52c676
Dissolved organic carbon (DOC) was leached from permafrost soils collected from the frozen permafrost layer at five sites underlying moist acidic tussock or wet sedge vegetation, and on three glacial surfaces on the North Slope of Alaska during summer 2018.
Rose Cory, Jennifer C Bowen, Collin P Ward, George Kling, 2020 Photomineralization apparent quantum yield at 309 nm for DOC leached from permafrost soils collected from the North Slope of Alaska in the summer of 2015. 10.6073/pasta/489bef4d2aa61e03bb77981605511b1d
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic and then characterized for its photochemical properties.  The apparent quantum yield of photomineralization (photochemical carbon dioxide, CO2, production) of permafrost DOC was quantified at 309 nm. 
Ecotypes Transplant Garden
Abstract
Ned Fetcher, James McGraw, 2013 Mass per tiller, nitrogen concentration, stable isotope ratios for carbon and nitrogen from the 1980-82 Eriophorum vaginatum reciprocal transplant experiment along a latitudinal gradient in interior Alaska collected in July, 2011. 10.6073/pasta/3c61baca4928cbd259a26ca746898b65
In 1980-1982, six transplant gardens were established along a latitudinal gradient in interior Alaska from Eagle Creek, AK in the south to Prudhoe Bay, AK in the north. Three sites, Toolik Lake (TL), Sagwon (SAG), and Prudhoe Bay (PB) are north of the continental divide and the remaining three, Eagle Creek (EC), No Name Creek (NN), and Coldfoot (CF), are south of the continental divide. Each garden consisted of 10 individual Eriophorum vaginatum tussocks transplanted back to their home-site, as well as 10 individuals from each of the other transplant sites.
Ned Fetcher, James McGraw, Marjan van de Weg, 2014 Temperature response of dark respiration from the 1980-82 Eriophorum vaginatum reciprocal transplant experiment along Dalton Highway, Alaska.. 10.6073/pasta/90263d4b31bc565b3bab55fa012151dc
These data were collected in July 2011 for tussocks transplanted in 1980-82 in a reciprocal transplant experiment and harvested in 2011. Important variables are garden name, source population, and dark respiration.
Jianwu Tang, Ned Fetcher, Michael L Moody, 2019 Absorbed soil nutrients on ion exchange membranes in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016. 10.6073/pasta/86225c3c1a98be0780d092f8b8bf9943
Transplant gardens at Toolik Lake and Sagwon were established in 2014.  At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SG, 69°25′26″N, 148°42′49″W) were transplanted. At the reciprocal transplant gardens, ion exchange membranes were used to measure nutrient availability over two time periods: Early season (June) and mid season (July). Membranes were deployed in the field for either 20 or 21 days, depending on travel constraints.
Landscape Interactions Bacteria Production
Abstract
George Kling, 2013 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2011, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/e173d6777edde2174fe5a065508ac0fa
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2006 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2005, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/1245c6b213b06c35210c8692719f9210
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2001 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2000, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/ff448d5b1922f22150e1ded117bc9941
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2003 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2002, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/5c7b614fd296fbcd68678acae7e279fe
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 1998 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 1996, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/357b671bc1016aea9b9a27a4665608a2
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2010 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2008, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/9b801826740815835c2c2b5710d62bd6
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 1999 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 1997, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/cffc5ad655e5212ac7801e9963006054
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2005 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2004, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/833939f6768034ec503199de84435cf7
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2011 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2010, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/c8e7c6ae3c0b6de34079060ce31b9c81
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2002 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2001, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/966889bb1bc0abaaaeda89453061f04d
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2000 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 1999, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/069c8e8b460cdaaa9f90634d36b5ea72
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2004 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2003, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/e3e51d7a3d60aab985d4807228d65430
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2007 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2006, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/2f469f317dbc26259b2be3c487d4bcaf
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2009 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2007, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/d7e8ccc75c4dc3b3c48af8ba2cb8bd8a
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
George Kling, 2010 Bacterial Production Data for lakes and lake inlets/outlets samples collected summer 2009, Arctic LTER, Toolik Research Station, Alaska.. 10.6073/pasta/fb00a0962d4b67633d64787b0859e238
Yearly file containing information on bacterial productivity. Samples were collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number (sortchem), site, date, time and depth.
Model data
Abstract
Edward Rastetter, 2020 Model output, drivers and parameters for Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes . 10.6073/pasta/24624a295f418f36ae90c99ab49bca07
Files used to generate the data for figures in:
Rastetter, EB, Kling, GW, Shaver, GR, Crump, BC, Gough, L. Ecosystem Recovery from Disturbance Is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance between Vegetation and Soil-Microbial Processes. Ecosystems (2020). https://doi.org/10.1007/s10021-020-00542-3.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (With a Long-term Trend) on Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/83775003d8ef8978bf43d5c801f2a9a9
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
root_dynamics data
Abstract
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2008 Pre-labeled dissolved inorganic carbon, carbon dioxide, and methane from experiemental plots near Toolik Lake, AK from 2006. 10.6073/pasta/df3e5b9afcdb14e04ee72141d8e393a1
Dissolved inorganic carbon, carbon dioxide, and methane in waters from pre-labeled wet sedge plots near Toolik Lake, AK during the summer of 2006.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2006 Phosphate and ammonium from experiemental plots near Toolik Lake, AK from 2004. 10.6073/pasta/43c22e376bf2074e3218927fb2a4124d
Soluble reactive phosphorus (SRP) and ammonium in waters from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2004.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2003 Methane flux from experiemental plots near Toolik Lake, AK from 2001. 10.6073/pasta/707548d38bae5869c5e7adeab1f13bdb
The methane fluxes from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2001.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2004 Methane flux from experiemental plots near Toolik Lake, AK from 2002. 10.6073/pasta/b0f201a13cd58b957ffafec1b2af5f0a
The methane fluxes from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2002.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2003 Soil Respirations from experiemental plots near Toolik Lake, AK for 2001. 10.6073/pasta/c2420e7c697014cac6b72b5b43a02129
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2001.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2005 Pre-labeled dissolved inorganic carbon, carbon dioxide, and methane from experiemental plots near Toolik Lake, AK from 2003. 10.6073/pasta/a473f26d8ebc8d19c6248ff692a79471
Dissolved inorganic carbon, carbon dioxide, and methane in waters from pre-labeled wet sedge plots near Toolik Lake, AK during the summer of 2003.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2006 13C and 15N Content in Arctic Tussock Tundra and Wet Sedge Vegetation. 10.6073/pasta/ee1d007696eba422c9914f7cfd6f6f4d
This file contains 13C and 15N content from tussock tundra and wet sedge vegetation collected from experiemental plots during the years 2001-2006.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2008 Phosphate and ammonium from experiemental plots near Toolik Lake, AK from 2006. 10.6073/pasta/6f555b30d308ea7ae1752e498d09788a
Soluble reactive phosphorus (SRP) and ammonium in waters from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2006.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2007 Methane flux from experiemental plots near Toolik Lake, AK from 2005. 10.6073/pasta/c4378d1fbf52032457f1a344245ab6f1
The methane fluxes from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2005.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2007 Pre-labeled dissolved inorganic carbon, carbon dioxide, and methane from experiemental plots near Toolik Lake, AK from 2005. 10.6073/pasta/5c425c007b9ae104fdc0939a6c1eef8f
Dissolved inorganic carbon, carbon dioxide, and methane in waters from pre-labeled wet sedge plots near Toolik Lake, AK during the summer of 2005.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2003 Microbial Respirations from experiemental plots near Toolik Lake, AK for 2001. 10.6073/pasta/4ef85017f9da938e69f8c7150156e66a
Microbial respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2001.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2005 Phosphate and ammonium from experiemental plots near Toolik Lake, AK from 2003. 10.6073/pasta/cffd6791e79e10709328dcadde388315
Soluble reactive phosphorus (SRP) and ammonium in waters from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2003.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2006 Soil Respirations from experiemental plots near Toolik Lake, AK for 2004. 10.6073/pasta/0ec1429f90c86f186f59a1f0e412c2b2
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2004.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2002 Pre-labeled dissolved inorganic carbon, carbon dioxide, and methane from experiemental plots near Toolik Lake, AK from 2000. 10.6073/pasta/6392b245b7b82587aa15c9548e0396b1
Dissolved inorganic carbon, carbon dioxide, and methane in waters from pre-labeled wet sedge plots near Toolik Lake, AK during the summer of 2000.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2006 Methane flux from experiemental plots near Toolik Lake, AK from 2003. 10.6073/pasta/31db702e5ae37ee96cffc5403b78314c
The methane fluxes from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2003.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2007 Dissolved organic carbon, phosphate, and ammonium from experiemental plots near Toolik Lake, AK from 2005. 10.6073/pasta/b66f19f933dcc53f6b4a27f481aed665
Dissolved organic carbon, SRP, and ammonium in waters from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2005

.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2004 Soil Respirations from experiemental plots near Toolik Lake, AK for 2002. 10.6073/pasta/7ae75645e026783edfd8eca8e8973fd6
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2002.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2006 Methane flux from experiemental plots near Toolik Lake, AK from 2004. 10.6073/pasta/6891ff71362e62b8389d16ac0e2eb6af
The methane fluxes from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2004.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2007 Dissolved and gaseous 14C from experimental plots near Toolik Lake, AK from 2005. 10.6073/pasta/66cfe40e5f880ed46718bd01763a495f
This file contains the Specific Activity of 14C from dissolved and gaseous species of carbon sampled from tussock tundra and wet sedge plots near Toolik Lake, AK during the summer of 2005.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2005 Soil Respirations from experiemental plots near Toolik Lake, AK for 2003. 10.6073/pasta/439b02d9438238fb7ae6afe590ffd2ed
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2003.
George Kling, Knute Nadelhoffer, Martin Sommerkorn, 2003 Pre-labeled dissolved inorganic carbon, carbon dioxide, and methane from experiemental plots near Toolik Lake, AK from 2001. 10.6073/pasta/99ca515d042b73de19e0c31b7011beef
Dissolved inorganic carbon, carbon dioxide, and methane in waters from pre-labeled wet sedge plots near Toolik Lake, AK during the summer of 2001.
Loretta Johnson, Knute Nadelhoffer, George Kling, 2007 Soil Respirations from experiemental plots near Toolik Lake, AK for 2005. 10.6073/pasta/9fb33bf8c4cb6992ed29077cd5f3288c
Soil respiration of carbon dioxide, and methane in waters from wet sedge plots near Toolik Lake, AK during the summer of 2005.
Terrestrial Biomass
Abstract
Mathew Williams, Edward Rastetter, 1999 Measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, summer 1997, North Slope, Alaska.. 10.6073/pasta/a5a4d4154e0a8181a5523b4d9c49ed99
1997 measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, North Slope, Alaska.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/5587a6f1bfc4f359c011139b2977d842
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Laura Gough, 2009 Above ground plant and below ground stem biomass in the Arctic LTER dry heath tundra experimental plots, 2006, Toolik Lake, Alaska. 10.6073/pasta/447aec542efb8fd505b85f90c35ea47e
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER dry heath tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Mark Harmon, 2002 Long-term Carbon and Nitrogen, and Phosphorus Dynamics of Leaf and Fine Root Litter project (LIDET-Long-term Intersite Decomposition Experiment Team) data for the ARC, Arctic LTER. 1990 to 2000.. 10.6073/pasta/96ee7de35954a3763ab4c244bad0c6f0
This file is from the Long-term Carbon and Nitrogen, and Phosphorus Dynamics of Leaf and Fine Root Litter project (LIDET-Long-term Intersite Decomposition Experiment Team). This file contains only the Arctic LTER data. In particular the mass looses over the ten year study. Three types of fine roots (graminoid, hardwood, and conifer), six types of leaf litter (which ranged in lignin/nitrogen ratio from 5 to 75), and wooden dowels were used for litter incubations over a ten year period.
Laura Gough, Sarah Hobbie, 2004 Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4195a17564c031686d5b95b551119fd5
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Laura Gough, Sarah Hobbie, 2004 Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/bdb3eeabb3b26075f0841440e8f92d3a
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Gaius Shaver, 2000 Ecosystem-level Carbon dioxide fluxes in two long-term experimental wet sedge tundra sites near Toolik Lake, AK, ARC LTER 1994.. 10.6073/pasta/e1601a77bb1471e895e47d5eef298d2c
Ecosystem-level Carbon dioxide fluxes were measured in two long-term experimental wet sedge tundra sites near Toolik Lake, AK. Experimental treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites). Fluxes were measured on quadrats that were later sampled for biomass and leaf area.
Gaius Shaver, Terry Chapin, 1991 Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK, 1982.. 10.6073/pasta/77ca341a7c1f12d8303a99fc8563182f
Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK. .There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61, 1991 pp.1-31.
Gaius Shaver, 2004 Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. 10.6073/pasta/b3407bae411c523f4857753b09f620a0
Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. Treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites).
Gaius Shaver, 1990 Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).. 10.6073/pasta/c0d17c3371e88847208dbc0b35f2f8f5
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1989 Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W),1982.. 10.6073/pasta/06fd5df56a2d83c09df1d155479092d5
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1998 Plant biomass in heath tundra experimental plots, 1996, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/4dcc09fd3ea2d757794d13c4727542aa
Plant biomass in arctic heath experimental plots. Plots set up in 1989 with nitrogen, phosphorus, nitrogen plus phosphorus and a shade treatment were harvested for above ground biomass. Root mass was also measured on a smaller subsample.
Gaius Shaver, 1991 Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W), 1982.. 10.6073/pasta/5822d635c5094a1aa9aba29f0692ea49
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). .There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Gaius Shaver, 1996 Plant biomass, leaf area, carbon, nitrogen, and phosphorus in wet sedge tundra, 1994, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/b68ff3f714e72e0528a2d72b2c04aafc
Plant biomass, leaf area, carbon, nitrogen, and phosphorus were measured in three wet sedge tundra experimental sites. Treatments at each site included factorial NxP and at the Toolik sites greenhouse and shade house. Treatments started in 1985 (Sag site) and in 1988 (Toolik sites).
Gaius Shaver, 2005 Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.. 10.6073/pasta/b227fa1d98ed466ea5fc3816ef5c8ba2
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Gaius Shaver, 1998 Above ground plant biomass and leaf area of moist acidic tussock tundra 1981 experimental site, Arctic LTER, Toolik Lake, Alaska.1995.. 10.6073/pasta/c8cc8ae964a9f9c68ffbf96cbb61e4e9
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Laura Gough, Sarah Hobbie, 2004 Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.. 10.6073/pasta/6e0b4ea291f4b5940b2b8b80af917bd5
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
Thermokarst Lakes
Abstract
George Kling, 2012 Chemistry from thermokarst impacted soils, lakes, and streams near Toolik Lake Alaska, 2008-2011.. 10.6073/pasta/2e55d1587290e642938ac1a6caed6ec6
This file contains data collected from thermokarst impacted soils, lakes, and streams near Toolik Lake Alaska. Data are also presented for experimental manipulations of water (e.g., time course experiments). Sample descriptors include a unique sortchem #, site, date, time, depth, distance, elevation, treatment, date-time, category, and water type (e.g., lake, surface, soil). Physical/chemical measures collected in the field include temperature, conductivity, and pH.
Welker IPY_Snow_shrub
Abstract
Jeff Welker, Paddy Sullivan, 2011 Welker IPY snow fence shrub site Betula leaf 15N, 13C, %N, %C, Toolik, Alaskanear Toolik Field Station 2007 and 2008.. 10.6073/pasta/b6c6bebabdbdc93b7d5d7937c45aede9
Betula nana leaf mineral leaf 15N, 13C, %N, %C was measured over the summer seasons in 2007 and 2008 at our shrub site. Fresh fully expanded leaves were collected several times during the summer.
AON Isotopes
Abstract
Erik Hobbie, John Moore, 2017 Carbon and nitrogen isotopes and concentrations in terrestrial plants from a six-year (2006-2012) fertilization experiment at the Arctic LTER, Toolik Field Station, Alaska.. 10.6073/pasta/011d1ba5f14fc9057dd67ff201174543
The data set describes stable carbon and nitrogen isotopes and carbon and nitrogen concentrations from an August 2012 pluck of a fertilization experiment begun in 2006. Fertilization was with nitrogen (N) and phosphorus (P). Fertilization levels included control, F2, F5, and F10, with F2 corresponding to yearly additions of 2 g/m2 N and 1 g/m2 P, F5 corresponding to yearly additions of 5 g/m2 N and 2.5 g/m2 P, and F10 corresponding to yearly additions of 10 g/m2 N and 5 g/m2 P. After harvest, plants were separated by species and then by tissue.
Landscape Interactions Chemistry
Abstract
Donald Schell, 1992 Radiocarbon and del 13C was determined on dissolved organic carbon collected from Imnavait Creek 1990 and 1991.. 10.6073/pasta/82410c8ec3c7e2fda4a087a74be64108
Del 13C was determined on dissolved organic carbon from Imnavait Creek water collected from the fourth pond upstream of the Imnavait Creek flume in 1990 and 1991. Radiocarbon was determined on a sample in each year.
George Kling, 2016 Dissolved organic carbon (DOC) measurements from Toolik Lake Inlet and Toolik Lake main, Toolik Field Sation, North Slope Alaska for 2005-2008.. 10.6073/pasta/a8497c1d9d45b91b79425bf708b64169
Dissolved organic carbon (DOC) measurements from Toolik Lake Inlet and Toolik Lake main sampling station for 2005-2008. The earliest measurements were in May and with the latest in September.
George Kling, 2013 Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska.. 10.6073/pasta/574fd24522eee7a0c07fc260ccc0e2fa
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, average thaw depth, well height, discharge, stage height, and light (lakes).
George Kling, 2013 Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska, 2011.. 10.6073/pasta/362c8eeac5cad9a45288cf1b0d617ba7
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, average thaw depth, well height, discharge, stage height, and light (lakes).
George Kling, 2022 Biogeochemistry data set for soil waters, streams, and lakes near Toolik Lake on the North Slope of Alaska, 2012 through 2020. 10.6073/pasta/4e25db9ae9372f5339f2795792814845
Data file of the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska.  Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream from a reference location), elevation, treatment, date-time, category, and water type (lake, surface, soil).  Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, and average thaw depth in soil.  Chemical analyses for the sample include alkalinity; dissolved inorganic and organic carbon (DIC and DOC); dissolved gas
Photochemistry Chemistry
Abstract
George Kling, Rose Cory, 2014 Apparent quantum yield data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/aa2d0ed4ddef6e76c3ef8d6c12460607
Data file describing the apparent quantum yield of photo-oxidation, photo-mineralization, and photo-stimulated microbial respiration of dissolved organic carbon in water samples collected at various sites near Toolik Lake on the North Slope of Alaska. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
George Kling, Rose Cory, 2014 Light profile data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/8e8cb22fd7ee278168f8eb6ad7e1a48c
Data file containing the irradiance profile with depth in two rivers on the North Slope of Alaska near Toolik Lake . Variables include site, depth, and wavelength. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
George Kling, Rose Cory, 2014 Photochemistry data set for NSF Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/2f9433d6a608e82e1dd4fa23175c1f59
Data file containing optical characterization of colored dissolved organic matter (CDOM). Data include CDOM absorption coefficients, water column light attenuation coefficients, specific UV light absorbance (SUVA254), spectral slope ratio, and fluorescence index from waters near Toolik Lake on the North Slope of Alaska. A synthesis of the data presented here is published in Cory et al. 2013, PNAS 110:3429-3434, and in Cory et al. 2014, Science 345:925-928.
Streams Chemistry
Abstract
William "Breck" Bowden, 2020 Arctic LTER Streams Chemistry Toolik Field Station, Alaska 1978 to 2019.. 10.6073/pasta/3faacd18b63b3bacc5a0dbd6f09660e1
Since 1983, the Streams Project at the Toolik Field Station has monitored physical, chemical, and biological parameters in a 5-km, fourth-order reach of the Kuparuk River near its intersection with the Dalton Highway and the Trans-Alaska Pipeline. In 1989, similar studies were begun on a 3.5-km, third-order reach of a second stream, Oksrukuyik Creek.
lakes chemistry
Abstract
Anne Giblin, George Kling, 1991 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.. 10.6073/pasta/8db9af4d3fc6f66b200c26cc0256b7f8
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Anne Giblin, George Kling, 2001 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.. 10.6073/pasta/c964a186ed5a58270602ea44f8c3927b
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Anne Giblin, George Kling, 2022 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2021. 10.6073/pasta/35879c60c852eeef54f09e4be8b41042
Note: Corrections were made to Particulate phosphorus values. See version 5 notes.
Anne Giblin, George Kling, 1985 Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.. 10.6073/pasta/7d30ceaaf64ac5e6bf6a336c17e3ffb1
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September).
Terrestrial Plant Phenological and Growth Data
Abstract
Gaius Shaver, 1998 Phenological stages of sedges were observed at a long term experimental moist tussock tundra site and a long-term experimental wet sedge tundra sites (Arctic LTER) for 1996 near Toolik Lake, AK.. 10.6073/pasta/7ce217450269be5adbca2fbf595c46dd
Phenological stages of sedges were observed at a long term experimental moist tussock tundra site and a long-term experimental wet sedge tundra sites near Toolik Lake, AK. Also, ITEX maximum growth measurements were recorded on August 19th (moist tussock tundra). Experimental treatments at each site included factorial NxP, greenhouse and shadehouse and were begun in 1989. See 96gsphdc.html and 96gsphsg.html for phenological data on deciduous and evergeen species.
Streams Metabolism
Abstract
William "Breck" Bowden, 2019 Kuparuk River Whole Stream Metabolism Arctic LTER, Toolik Field Station Alaska 2012-2017. 10.6073/pasta/cd383e684fb53d1b1d36712720b31c32
The Kuparuk River has been the central research location on the impact of added phosphorus to arctic streams. Additions of phosphorus occred since 1983. Today, 4 specific reaches show certain characteristics based on the years that they recieved fertilization. Whole Stream Metabolism is a way to quantify primary production of this stream system. Calculations were done using dissolved oxygen, discharge, stage, light and temperature measured by sondes and other equipment strategically deployed in the field at locations to quantify each of the unique stream reaches.
Thermokarst Streams
Abstract
William "Breck" Bowden, 2014 ARCSS/TK water chemistry and epilithon characterization from the Noatak National Preserve, Kelly River region (2010) and Feniak Lake region (2011).. 10.6073/pasta/39ed7afdfd1ad36019bd3b02c64d1bd1
These data are from two remote field campaigns in the Noatak National Preserve. Various thermokarst features and their receiving streams were sampled and characterized. A suite of water chemistry (nutrients, major anions and cations, total suspended sediment) and benthic variables (particulate carbon, nitrogen and phosphorus, and chlorophyll-a) were measured at 6 major sites (2 in 2010 and 4 in 2011). There were additional sites sampled for water chemistry above and below thermokarst features in 2011.
William "Breck" Bowden, 2014 ARCSS/TK water chemistry and total suspended sediment data from I-Minus2 and Toolik River thermokarsts and receiving streams, near Toolik Field Station, Alaska, summers 2006-2013.. 10.6073/pasta/36446317e7682f1b03c0f7def5b16fcc
Water samples were taken at 5 locations at both I-Minus2 and Toolik River thermokarst sites (10 sampling locations total). A combination of ISCO and manual grab samples were taken depending on the sampling location and year.
William "Breck" Bowden, 2014 ARCSS/TK stream dissolved organic carbon biodegradability (2011).. 10.6073/pasta/2057860f44b75e4291072a996f2b99b1
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. The objective of this data set was to measure the quantity and biodegradability of DOC from headwater streams and rivers across three geographic regions and across four natural ‘treatments’ (reference; thermokarst-; burned-, and thermokarst + burned-impacted streams) to evaluate which factors most strongly influence DOC quantity and biodegradablity at a watershed scale.
William "Breck" Bowden, 2014 ARCSSTK benthic nutrients and chloropyll-a. 10.6073/pasta/5905edbd9bca76c1b25542d9a661d1a2
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. Specifically, the ARCSSTK goal Streams goal was to quantify the relative influences of thermokarst inputs on the biogeochemical structure and function of receiving streams. Throughout the project, samples were collected from Benthic Rock Scrubs and measured for cholorophyll-a and particulate carbon (C), nitrogen (N) and phosphorus (P).
William "Breck" Bowden, 2014 ARCSSTK WSM. 10.6073/pasta/11eb4e1ce9dfb4413cb869e5fc11472f
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. Specifically, the ARCSSTK goal Streams goal was to quantify the relative influences of thermokarst inputs on the biogeochemical structure and function of receiving streams. Whole Stream Metabolism was calculated using dissolved oxygen, discharge, stage, and temperature measured by sondes deployed in the field.
AON Stream Chemistry
Abstract
George Kling, 2019 Biogeochemistry data set for Imnavait Creek Weir on the North Slope of Alaska 2002-2018. 10.6073/pasta/733c73c6ebffeaec6970b2b0f4dddfe6
Data file containing biogeochemical data of water samples collected in Imnavait Creek, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), and elevation. Values of variables measured in the field include temperature, conductivity, pH. Chemical analysis for samples include alkalinity, dissolved organic carbon, inorganic and total dissolved nutrients particulate carbon, nitrogen, and phosphorus, cations and anions.
Lakes Isotopes
Abstract
George Kling, 1991 Concentration of dissolved inorganic carbon (DIC) and del 13C isotope value for lakes and rivers on North Slope from Brooks Range to Prudhoe Bay, Arctic LTER 1988 to 1989.. 10.6073/pasta/fd1f44e498dfea8a17b1cfdbd5541e4c
Concentration of dissolved inorganic carbon (DIC) and del 13C isotope value for lakes and rivers on North Slope from Brooks Range to Prudhoe Bay, Arctic LTER 1988 to 1989.
George Kling, Christopher Luecke, 2007 Concentration of dissolved inorganic carbon (DIC), carbon and nitrogen concentrations, C:N ratios and del 13C isotope value for lakes and rivers on North Slope from Brooks Range to Prudhoe Bay, Arctic LTER 1988 to 2005. 10.6073/pasta/6341694e9d7155735d17da7001014e18
Composite file describing plant, animal, water, and sediment samples collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number specific to the file, a number that relates the samples to other samples collected on the same date and time (sortchem), site, date, time, and depth. Samples are identified by type, category, and a short description. Data include isotope values, carbon and nitrogen concentrations, and C:N ratios of samples.
George Kling, 1989 Carbon and nitrogen stable isotope values for lake trout from 6 different Arctic lakes near Toolik, Arctic LTER 1987 to 1988.. 10.6073/pasta/ff68d691c59fbfb0b0c37903be1131b7
Lake trout were analysed for carbon and nitrogen stable isotope values in 6 Arctic lakes near Toolik Lake at the Arctic LTER in 1987 and 1988. The fish were also analysed for age using otoliths.
Terrestrial Soil Microfuna and Microflora
Abstract
John Moore, 2013 Belowground foodweb biomass and soil CN and bulk density from moist acidic tundra nutrient addition plots (since 1989, 2006) sampled July 2011.. 10.6073/pasta/4d4fb41a345e5daaa17569b14fb5ebba
Biomass of belowground community groups (bacteria, fungi, protozoa, nematodes, rotifers, tardigrades) determined for organic and mineral soils in moist acidic tundra. Soil carbon and nitrogen content, bulk density, and depth are included.
John (J.C.) Weber, John Hobbie, 2011 Plant litter, soil, plants and fungal fruiting bodies 15N, 13C, percent C and N along Dalton Highway, Alaska 2004, 1990, 2007.. 10.6073/pasta/015d969d9fa8edad701ac0141614472a
The data set includes 15N and 13C for plant litter, soil, plants and fungal fruiting bodies (mycorrhizae), percent C (soil organic matter and percent N from samples collected in three separate trips (1990, 2004, 2007) along the transect of the Dalton Highway (AK) extending from the Yukon River on the south to Prudhoe Bay on the north.
Thermokarst Soil
Abstract
Michelle Mack, Edward Schuur, 2013 Surface soil characteristics for six thermokarst chronosequences near Toolik Field Station and Noatak National Preserve, Alaska. 10.6073/pasta/ad0c79140211e1f4db2509fded5653b8
Surface organic and mineral soil layers were sampled in retrogressive thaw slump disturbance scars and nearby undisturbed tundra to estmate the influence of this thermo-erosional--thermokarst--disturbance type on soil carbon (C) and nitrogen (N) pools. Within six independent sites, we identified multiple thaw slump scars and determined time after disturbance for each scar by (1) aging the population of tall deciduous shrubs rooted in the mineral soil and (2) by dating the basal layer of the re-accumulating soil organic matter.
Torre Jorgenson, 2013 Permafrost soil database with information on site, topography, geomorphology, hydrology, soil stratigraphy, soil carbon, ground ice isotopes, and vegetation at thermokarst features near Toolik and Noatak River, 2009-2013. 10.6073/pasta/6294610ce5738eb9c7e5d1ce13b54017
This database contains soil and permafrost stratigraphy associated with thermokarst features near Toolik Lake and the Noatak River collected by Torre Jorgenson and Andrew Balser during summers 2009-2011. The Access Database has main data tables (tbl_) for site (environmental), soil stratigraphy, soil physical data, soil chemical data, soil isotopes (ground ice), soil radiocarbon dates, topography and bathymetry, and vegetation cover.
Lakes Physical and Chemical Parameters
Abstract
Anne Giblin, George Kling, 2022 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1975 to 1989.. 10.6073/pasta/588e78d0d92ee947349eda23402543f6
Decadal file describing the physical lake parameters recorded at various lakes near Toolik Research Station during summers from 1975 to 1989. Depth profiles at the sites of physical measures were collected in situ. Values measured included temperature, conductivity, pH, dissolved oxygen, Chlorophyll A, Secchi disk depth and PAR. Note that some sample depths also have additional parameters measured and available in separate files for water chemistry and primary production.
Anne Giblin, George Kling, 2001 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009. 10.6073/pasta/791e3cb6288f75f602f23ef3e5532017
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 2000 to 2009. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 1991 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999. 10.6073/pasta/1fd85582de93a281e5e5d3b80df97b52
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 1990 to 1999. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Anne Giblin, George Kling, 2021 Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2021. 10.6073/pasta/76ae1339a928d85193eb15bbe88cee75
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Cody Johnson, George Kling, Anne Giblin, 2011 Sedimentation rate, concentration of macronutrients and flux for NE14, Toolik, Dimple, Perched during Summer 2009.. 10.6073/pasta/e2db8161be27bdbdcd398b0290f63f39
We measured the flux of bulk material and major macronutrients (carbon, nitrogen and phosphorus) from the water column to the benthos in four separate lakes during the summer of 2009. The lakes were chosen to investigate the impacts of disturbance on lake sedimentation. Two of the lakes, Dimple and Perched, were within catchments that were burned by the 2007 Anaktuvuk River wildfire. Two of the lakes, NE-14 and Perched, were receiving elevated sediment loads from thermokarst failures on their shorelines, and Toolik Lake was used as a reference lake.
Modeling Data
Abstract
Yueyang Jiang, 2016 Long-term changes in tundra carbon balance following wildfire, climate change and potential nutrient addition, a modeling analysis.. 10.6073/pasta/3c28308d774de3b01a416bd4cb597067
A study investigating the mechanisms that control long-term response of tussock tundra to fire and to increases in air temperature, CO2, nitrogen deposition and phosphorus weathering. The MBL MEL was used to simulate the recovery of three types of tussock tundra, unburned, moderately burned, and severely burned in response to changes in climate and nutrient additions. The simulations indicate that the recovery of nutrients lost during wildfire is difficult under a warming climate because warming increases nutrient cycles and subsequently leaching within the ecosystem.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Steady state carbon, nitrogen, phosphorus, and water budgets for twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/b737b5f0855aa7afeda68764e77aec2a
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Bonnie Kwiatkowski, David Kicklighter, Audrey Baker Potkin, Helene Genet, Jesse Nippert, Kim O'Keefe, Steven Perakis, Stephen Porder, Sarah Roley, Roger Ruess, Jonathan Thomson, William Wieder, Kevin Wilcox, Ruth Yanai, 2022 Ecosystem responses to changes in climate and carbon dioxide in twelve mature ecosystems ranging from prairie to forest and from the arctic to the tropics. 10.6073/pasta/7ca56dfbe6c9bedf5126e9ff7e66f28d
We use the Multiple Element Limitation (MEL) model to examine the responses of twelve ecosystems - from the arctic to the tropics and from grasslands to forests - to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in annual precipitation.
Edward Rastetter, Kevin Griffin, Bonnie Kwiatkowski, George Kling, 2022 Model Simulations of The Effects of Shifts in High-frequency Weather Variability (No Long-term Weather Trend) Control Carbon Loss from Land to the Atmosphere, Toolik Lake, Alaska, 2022-2122. 10.6073/pasta/a946904960bb11f44915b80fb4fc5981
Climate change is increasing extreme weather events, but effects on high-frequency weather variability and the resultant impacts on ecosystem function are poorly understood. We assessed ecosystem responses of arctic tundra to changes in day-to-day weather variability using a biogeochemical model and stochastic simulations of daily temperature, precipitation, and light. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates.
Terrestrial Precipitation Chemistry
Abstract
Gaius Shaver, 2006 Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988 to 2007.. 10.6073/pasta/410d11b9f95caf846e5fb6959145a4de
Bulk precipitation was collected during summer months (June, July and August) on a per rain event basis at the University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W). Analysis of pH, NH4-N and phosphorus were performed at the field station. NO3-N were frozen and analyzed in Woods Hole, MA
Gaius Shaver, 2006 Precipitation cations and anions for June, July and August from a wet/dry precipitation, University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W), Arctic LTER 1989 to 2003. 10.6073/pasta/d59fb55e6934f4f90bd652399a2e76f8
Precipitation, collected from a wet/dry precipitation collector located near University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W) was sent out for standardized EPA rain water analysis. Nutrient chemistry was also run on a sub sample at the field station.
Gaius Shaver, 2004 Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots Toolik Field Station 2003. 10.6073/pasta/dd5fc68975ac6158633ccf11c91aa1c7
Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots. The snow layers in each pit were described and sampled separtely with the help of Matthrew Sturm.
Terrestrial
Abstract
Gaius Shaver, Yuriko Yano, 2009 water chemistry of Imnavait watershed during 2002-2004. 10.6073/pasta/6a2e2065b9039335ac7a2b229204ecd6
Water chemistry (NO3, NH4, TDN, DON, DOC) from Imnavait watershed along hillslope. Sample waters were either collected by lysimeters, needle with syringe, or extracting soil with water or 1N KCl.
Gaius Shaver, Yuriko Yano, 2006 NO3 and NH4 collected by resin bags in 15N addition plots during 2003-2004. 10.6073/pasta/c98aee0d4a8c4023107c26588e6227d5
Concentrations of NO3 and NH4 and d15N of NO3 and NH4 collected on resin bags from 15N addition plots along hillslope in Imnavait watershed.
Laura Gough, Sarah Hobbie, 2005 Percent carbon and percent nitrogen of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2001, Arctic LTER, Toolik Lake, Alaska.. 10.6073/pasta/75de62f9de5e22e63a76c8b48b99cf2b
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Terrestrial Soil Properties
Abstract
John Moore, 2013 Soil aggregate size distribution and particulate organic matter content from Arctic LTER moist acidic tundra nutrient addition plots, Toolik Field Station, Alaska, sampled July 2011.. 10.6073/pasta/504c0050d83f759ab7edb74064b8cab3
Soil aggregate size distribution, aggregate carbon and nitrogen, and light fraction carbon were determined for mineral soils in moist acidic tundra. Soil was sampled in control, and N+P plots of the Arctic LTER Moist Acidic Tundra plots established in 1989 and 2006.
Laura Gough, 2000 Plant available NH4, NO3, and PO4 was determined at three site (LTER Toolik acidic and nonacidic tundra and Sagwon acidic tundra) and three community combinations (tussock, watertrack, and snowbed) Arctic LTER 1997.. 10.6073/pasta/b5f5ca168b82ffc3db6522a489a90c7f
Plant available NH4, NO3, and PO4 was determined at three site (LTER Toolik acidic tundra, LTER Toolik nonacidic tundra, and Sagwon acidic tundra) and three community combinations (tussock, watertrack, and snowbed), three times during the season. pH was also determined in July and strong acid phosphorous in August.
Gaius Shaver, 1993 Extractable NH4-N and NO3-N (2 N KCl), PO4-P (0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a transect along the Dalton road, Arctic LTER 1991.. 10.6073/pasta/d2fc50cac67c6ae3659500e1baa2d3a9
Extractable NH4-N and NO3-N (2 N KCl), PO4-P

(0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a

transect along the Dalton road. Sites are Gus Shaver flowering sites and

Arctic LTER sites.
Gaius Shaver, 2005 Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts, Arctic LTER 1987 to 2002. 10.6073/pasta/48fd52a09bf83e6c6bcecb49b48e9358
Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts. This file complies data collected at different times from 1987 through 2001 and includes initial extracts taken for buried bag method of net nitrogen mineralization.
Donald Schell, 1989 Radiocarbon dates for an elevational gradient by Toolik Lake, North Slope of Alaska 1988.. 10.6073/pasta/90a45bbe7265d037228609a2054afac5
Two cores of peat, approximately 15 cm2, were cut to the depth at which mineral soils were encountered at each site. The sites of sampling correspond to an elevational gradient leading from the lakeside upslope to the begining of the water track at the ridgetop. Each sample was divided into three sections, one section to be used for radiocarbon age , one for loss on ignition, and the remainder to be kept for future needs.
Donald Schell, 1991 Peat cores were collected along the Dalton Highway for the analysis of soil properties, 13C and percent of modern age, North Slope, Alaska 1989.. 10.6073/pasta/3ea4ba41db1236a5fea4a3f1cad8bea9
Peat cores were collected along the Dalton Highway in 1989 and analysed for percent moisture, percent organic carbon, bulk densitey, del C-13, and radiocarbon content at varying depth intevals throughout the core. Samples were collected to the mineral zone and kept in cold storage until analysis. Samples were collected from 12 sites.
Gaius Shaver, Yuriko Yano, 2009 Chloroform-extractableN and d15N within 15N addition plots for Aug 2003. 10.6073/pasta/3afcfb4b01223d351944947a7881a2d6
Pool size and d15N values for chloroform-extractable N, extractable-N, and non-extractable N pools. Samples collected in Aug. 2003 from 1st Organic Layer of 15N addition plots in Imnavait watershed.

1st Organic Layer = the upper 10 cm of organic soil or, if the organic layer was < 10 cm thick, the entire layer (e.g., there was never > 4 cm of organic soil at Crest).
Gaius Shaver, Yuriko Yano, 2009 physical and chemical information for soil cores from Imnavait watershed during 2003-2005. 10.6073/pasta/55038942444330ec87fbf0eaac4a2a75
Physical (bulk density, soil thickness) and chemical (total C and N, d13C and d15N) information of soil cores taken from 15N addition plots in Imnavait watershed.
Knute Nadelhoffer, Anne Giblin, 1995 Carbon, nitrogen and phosphorus content in the seasonally thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station, Arctic LTER 1993.. 10.6073/pasta/84ab340d21f16f18976b850d92923a50
Carbon, nitrogen and phosphorus content in thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station.
Jennie McLaren, 2018 Multiple biogeochemical variables were measured for organic and mineral soils on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013.. 10.6073/pasta/2302b3a5eab56970aa4e4f71d36b7fce
Measures of soil nutrient content (available N and P, Extractable N and P, Total C, N and P), and microbial biomass and activity (exoenzyme activity) were measured for organic and mineral soils on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra (organic soils only). 
Jennie McLaren, 2019 Soil biogeochemical variables collected on the Arctic Long Term Ecological Research (ARC LTER) experimental plots in moist acidic and dry heath tundra, Arctic LTER Toolik Field Station, Alaska 2017. 10.6073/pasta/5a5cbb785bde48522bde7b87c65d3c13
Soil nutrients (
Jennie McLaren, 2021 Soil biogeochemical variables collected on the Arctic LTER experimental plots in moist acidic, moist non-acidic, wet shrub and shrub tundra, Arctic LTER Toolik Field Station, Alaska 2015. 10.6073/pasta/d4f567844673857239eec0cb61c6f543
We investigated the effect of long-term warming on multiple soil and microbial carbon, nitrogen, and phosphorus pools, and microbial extracellular enzyme activities, with a particular focus on phosphorus, in Alaskan tundra plots underlain by permafrost
Terrestrial Trace Gases
Abstract
Joshua Schimel, Knute Nadelhoffer, Gaius Shaver, Anne Giblin, Edward Rastetter, 1995 Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities, Toolik Field Station, North Slope Alaska, Arctic LTER 1993.. 10.6073/pasta/64c4ad25b7efb6f98acc22301dd1802a
Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities. This is the third year of collection data.
Joshua Schimel, Knute Nadelhoffer, Gaius Shaver, Anne Giblin, Edward Rastetter, 1994 Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities Arctic LTER experimental plots, Toolik Field Station, 1992.. 10.6073/pasta/3e2ae7928b00f7546338086d0dc3bd55
Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities. This is the second year of collection data.
Joshua Schimel, Knute Nadelhoffer, Gaius Shaver, Anne Giblin, Edward Rastetter, 1993 Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities, Toolik Field Station, North Slope Alaska, Arctic LTER 1991.. 10.6073/pasta/09df4ac1e2f3de2532677246b804e840
Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities.
Werner Eugster, George Kling, James A Laundre, 2020 Climate data from Arctic LTER Toolik Inlet Wet Sedge site, Toolik Field Station, Alaska 2012 to 2018. . 10.6073/pasta/dddeb05b2806e2f5788fadd6fc590ef1
Two Figaro TGS 2600 sensors were installed at the Toolik Wet Sedge site in late June 2012 to 2018.
Photochemistry
Abstract
George Kling, Rose Cory, 2014 Biogeochemistry data set for NSF Arctic Photochemistry project on the North Slope of Alaska.. 10.6073/pasta/22a3a3fc2dc74b7aabe8a10ab9061cf0
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake on the North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, and category (level of thermokarst disturbance). Physical measures collected in the field include temperature, electrical conductivity, and pH.
Thermokarst
Abstract
William "Breck" Bowden, 2014 Physical site characteristics for the ARCSS/TK stream dissolved organic carbon biodegradability (2011) data set.. 10.6073/pasta/251cd2feee2adcab246208e77abd5985
The (ARCSSTK) did extensive research during 2009-2011 field seasons in Arctic Alaska. The objective of this data set was to measure the quantity and biodegradability of DOC from headwater streams and rivers across three geographic regions and across four natural ‘treatments’ (reference; thermokarst-; burned-, and thermokarst + burned-impacted streams) to evaluate which factors most strongly influence DOC quantity and biodegradablity at a watershed scale. This table provides physical site characteristics for the locations sampled for stream water biodegradability.
CSV
Subscribe to elements and compounds